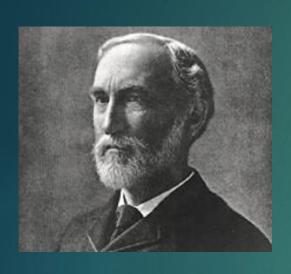

EQUILIBRIO ENTRE CONSTRUCCION DE UN DIAGRAMA DE

Objetivo general

Interpretar el diagrama de fases de una sustancia pura, construido a partir de datos de presión y temperatura obtenidos a través de diferentes métodos.

Objetivos particulares

- a. Comprender la información que proporcionan la regla de las fases de Gibbs y la ecuación de Clausius-Clapeyron.
- b. Distinguir los equilibrios entre las diferentes fases (sólido, líquido, vapor).
- c. Deducir las propiedades termodinámicas involucradas en la transición de fases


III. PROBLEMA

Construir el diagrama de fases del ciclohexano a partir de datos obtenidos en la literatura, experimentales y calculados.

DEBERAS RESPONDER EL SIGUIENTE CUESTIONARIO PREVIO.

- 1. Expresar la regla de las fases de Gibbs. y explicar qué información proporciona en la construcción del diagrama de fases.
- ▶ 2. Definir los conceptos de componente, fase y grado de libertad.
- 3. Escribir las ecuaciones de Clapeyron y Clausius-Clapeyron, indicar el significado de los términos que aparecen en ellas y explicar en qué casos de equilibrio de fases se aplica cada una.
- 4. Explicar qué representa el punto triple en un diagrama de fases. Proporcionar dos ejemplos.
- 5. Definir los términos siguientes: temperatura de fusión
 - temperatura de ebullición
 - temperatura crítica
 - presión crítica
 - Entalpía de fusión
 - Entalpía de vaporización.

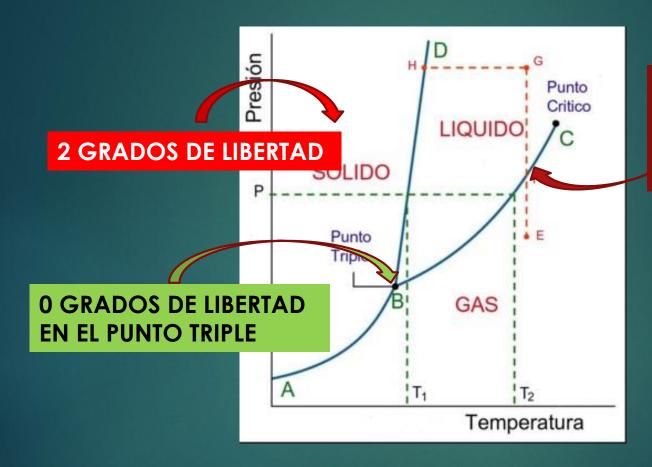
REGLA DE LAS FASES

Josiah W. Gibbs

- Para describir el estado de equilibrio de un sistema de varias fases y diversas especies químicas se debe conocer el número de variables intensivas independientes que definen el sistema.
- Para conocer este número se aplica la regla de las fases:
 L = 1 -3 + 2 = 0

$$L = C - F + 2;$$

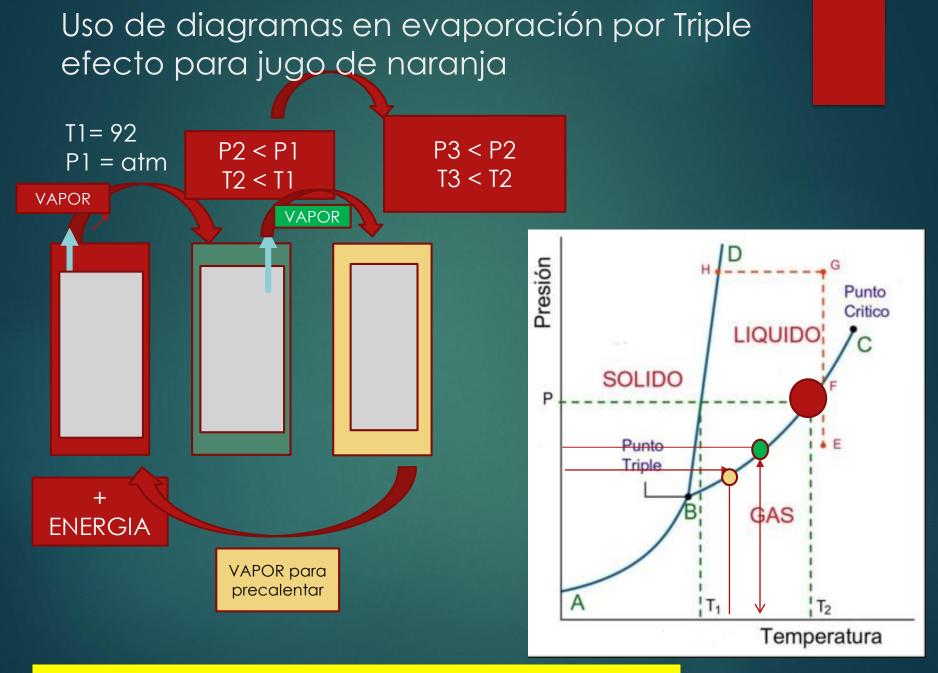
L es número de variables intensivas independientes (grados de libertad)


C el número de componentes químicos del sistema

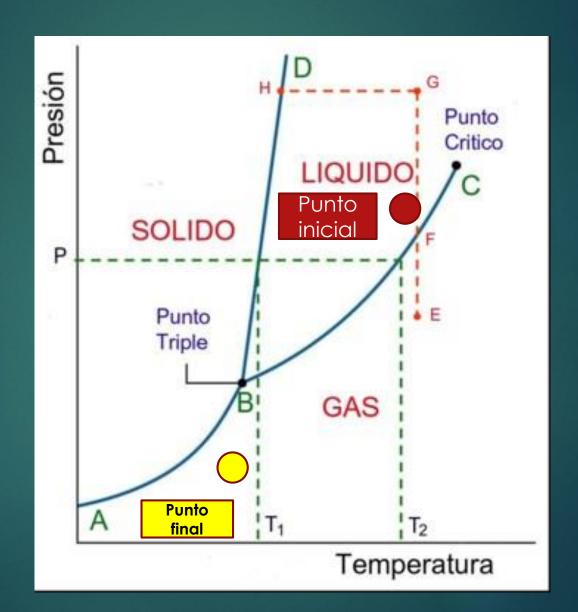
F el número de fases presentes en el sistema

DIAGRAMA DE FASES PARA SISTEMAS DE UN COMPONENTE- Regla de las fases

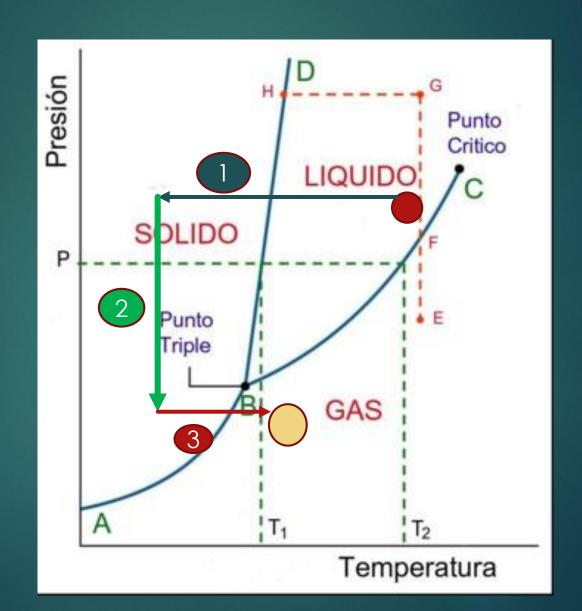
- Para especificar el estado termodinámico de un sistema formado por una sustancia pura el número variables intensivas independientes que hay conocer (grados de libertad) es:
- Si hay presente una fase:
- L = 1 componente 1 fase + 2 = 2 variables, es necesario especificar, por ejemplo la P y la T.
- Si hay presente dos fases
- L = 1 componente 2 ases + 2 = 1 variable, es necesario especificar sólo P o T.
- Si hay presente tres fases, L = 1 componente 3 fases + 2 = 0 variables.


Regla de las faces

1 GRADOS DE LIBERTAD SOBRE LA LINEA DE EQUILIBRIO


INVESTIGAR EN LA LITERATURA LOS DATOS SIGUIENTES PARA EL CICLOHEXANO:

Temperatura de fusión normal	280 K
▶ Temperatura de ebullición normal.	353.85 K
▶ Temperatura crítica	554 K
Presión crítica	40.17 atm
▶ entalpía de fusión ∆Hf :	2666.7Jmol-1
entalpía de vaporización ΔHv:	33001.3Jmol-1



https://www.youtube.com/watch?v=bWkUWfBPbo8

¿Cual seria un proceso para sublimar un Líquido?

Cual seria un proceso para sublimar un Líquido

Deducción de la ecuación de Clapeyron

A partir de la ecuación de definición de la energía de Gibbs G= H-TS, se obtiene la siguiente relación para el potencial químico : μ = h-TS y como en el equilibrio μS = μL se obtiene

$$h^S - TS^S = h^L - TS^L$$

Reordenando esta ecuación se tiene que:

$$h^L - h^S = T(S^L - S^S)$$

Sustituyendo en la ecuación de Clapeyron

$$dP/dT = (SL - Ss) / (VL - Vs)$$

- $\overline{dP/dT = (h^L h^S)/T} (V^L V^S)$
- \rightarrow dp/dT = \triangle Hfus / T(Vfus
- Del lado derecho se tienen cantidades que se pueden medir experimentalmente y por lo tanto evaluar la derivada

Deducción de la ecuación de Clapeyron

Por ejemplo , la cantidad ΔHfus es el calor latente del cambio de fase de S-L . Integrando la ecuación anterior entre límites llegamos a la ecuación requerida

 $P2-P1 = \Delta Hfus/\Delta Vfus Ln (T2 - T1)$

Deducción de la ecuación de Clausius - Clapeyron

Para el equilibrio liquido –vapor (L – V) la ecuación de Clapeyron se transforma en :

Estos son los cambios de propiedades en el proceso de evaporación. El superíndice o en la P se debe a que la presión del equilibrio en el sistema líquido – vapor se le conoce como la presión de vapor y se denota por Po. Considerando las siguientes aproximaciones:

Presión bajas , comportamiento de gas ideal para el vapor V^V >> V^L

Deducción de la ecuación de Clausius - Clapeyron

▶ Entonces se tiene que

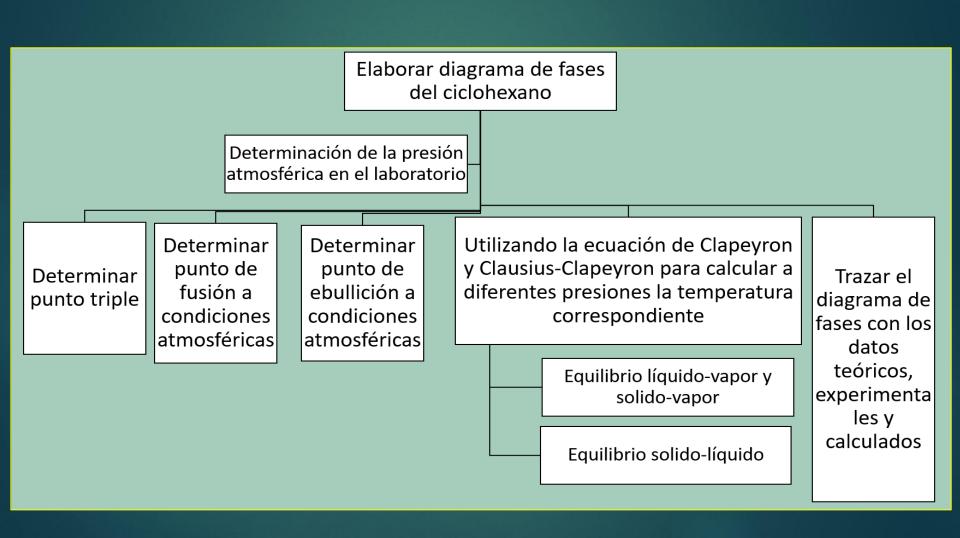
- Sustituyendo obtenemos :
- Y pasando P⁰ del lado izquierdo al lado derecho de la ecuación y rearreglando la derivada se obtiene:

Esta ecuación se conoce como ecuación de Clausius-Clapeyron . Se aplica a la línea de equilibrio líquido . Vapor y solido vapor a presiones bajas

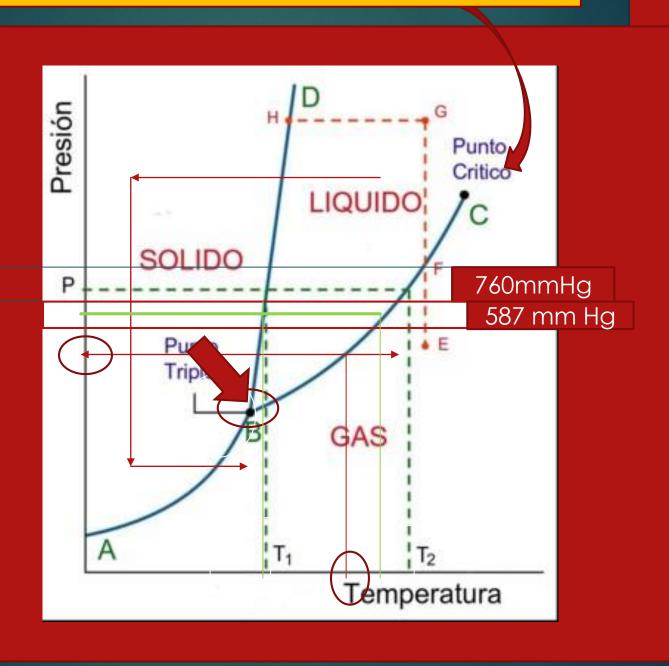
In (P2 / P1) = - (
$$\Delta$$
 H_{VGD} / R) (1/T2 - 1/T1)

Deducción de la ecuación de Clausius - Clapeyron

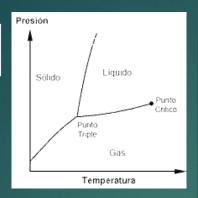
sta ecuación se conoce como ecuación de Clausius-Clapeyron . Se aplica a la línea de equilibrio líquido . Vapor y solido vapor a presiones bajas


Ln (P2/P1) = $(-\Delta Hv/R)(1/T2 - 1/T1)$

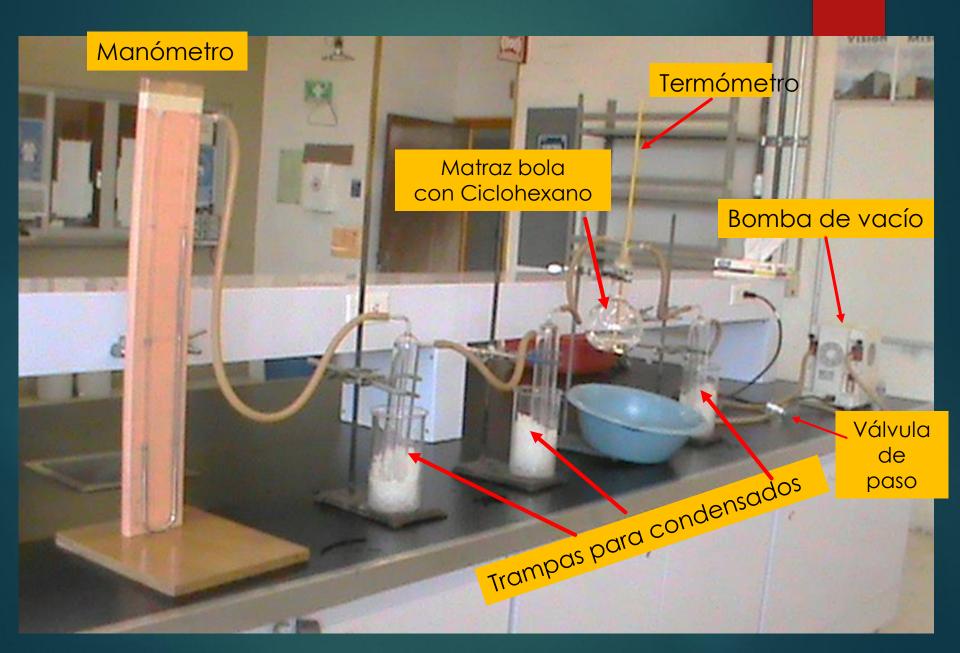
PROCEDIMIENTO EXPERIMENTAL

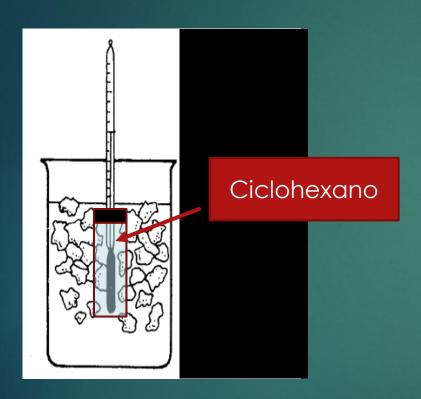

A3. MATERIALES Y REACTIVOS

Manómetro de mercurio	1	Soporte universal con pinza 1
Bomba de vacío con trampa	1	Recipiente para baño de 1 hielo
Sistema de destilación fraccionada o simple	1	Charola de plástico de 30 cm 1 x 20 cm x 15 cm
Termómetro de mercurio de -1 a 101 °C	1	Hielo Sal de cocina en grano
Tubo de ensaye de 12 x 150 mm ó 15 mL con tapón y termómetro	1	Ciclohexano
Matraz bola 1 L con tapón trihoradado, varilla de vidrio y mangueras de látex	1	

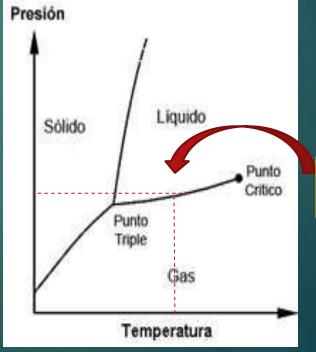

Resumen de la metodología

Ln P2/P1 = - H v/ R [1/T2 - 1/T1] + C

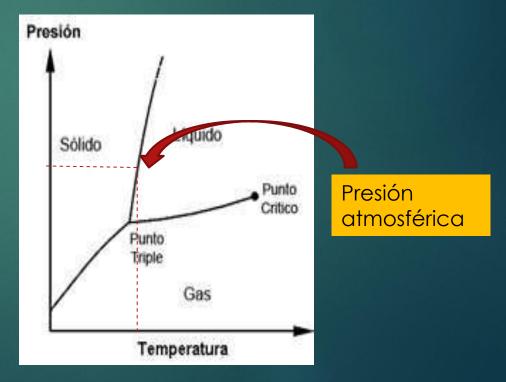

Punto triple



- a. Al matraz de bola se adiciona aproximadamente 200 ml de ciclohexano y se introduce el termómetro en el tapón de tal modo que al ponerlo al matraz se encuentre sumergido en el líquido.
- b. Se conecta el manómetro al matraz de bola y éste a la bomba de vacío de tal manera que no se tengan fugas.
- c. Se determina la presión manométrica y la temperatura antes de conectar la bomba de vacío.
- d. Se introduce el matraz dentro del baño de hielo y se deja enfriar a 5°C.
- **e.** Se conecta la bomba de vacío y se hace el vacío.
- f. Se determinan las condiciones de presión y temperatura bajo las cuales se presenta el equilibrio sólido-líquido-vapor (el punto


Descripción de equipo y montaje

Equilibrio liquido-sólido a Presión atmosférica


► En un tubo de ensayo se ponen 3 mL de ciclohexano, se introduce un termómetro y todo esto a su vez a un baño de hielo con agua. Se determina la temperatura de equilibrio líquido-sólido a la presión del lugar.

Presión atmosférica

Equilibrio liquido-vapor a Presión atmosférica

Soporte Termómetro Cabeza de destilación Refrigerante Alargadera Matraz Placa calefactora Recipiente h. Se monta un sistema de destilación y se determina la temperatura de ebullición a la presión atmosférica.

CALCULOS Y RESULTADOS

Despeja **AHv** de la Ecuación de Clausius- Clapeyron y calcula en base a los datos teóricos y experimentales del equilibrio Líquido-Vapor

 $\ln (P_2 / P_1) = -(\Delta H_{\text{vap}} / R)(1/T_2 - 1/T_1)$

d. Calcular la entalpía de vaporización.

- valor reportado en la <u>literatura (33 001.3 J mol-1)</u>
- Ejemplo:
- ► $\Delta Hv = [Ln (P2/P1) / [1/T2 1/T1]] (-R)$

UTILIZANDO LOS PUNTOS DE EBULLICIÓN TÉORICO Y EXPERIMENTAL

$$P_1 = P_{rep}$$
 760 mm Hg $T_1 = T_{PT}$ 353.85 K

$$P_2 = P_{exp}$$
 582.8. mm Hg $T_2 = Texp$ 345.15 K

R 8.314 J mol⁻¹

 Δ Hvap calc 31,984 J mol⁻¹

De la ecuación de Clausius – Clapeyron despeja T2

Ln $(P2/P1) = (-\Delta Hv /R)(1/T2 - 1/T1)$

Una vez despejada T2 Aplica los datos siguientes para calcular T2. Y se comparara con el dato experimental según el video del procedimiento equilibrio Líquido - Vapor

 $P_1 = 760 \text{ mm Hg}$ $T_1 = 353.85$ $P_2 = 585 \text{ mm Hg}$ $T_2 = ??$

 $\Delta Hv = 33001.3 \text{ j/mol}$ T2 exp= 72°C

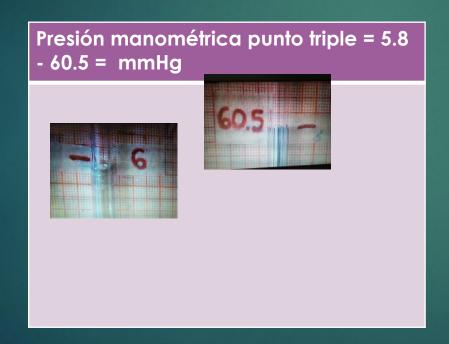
A5. DATOS, CÁLCULOS Y RESULTADOS

- 1. Completar la tabla 1 con los datos experimentales, reportados y calculados.
- 2. Algoritmo del cálculo
- Calcular la temperatura (T2) en un punto de equilibrio L-V cercano a la temperatura de ebullición normal.
- ▶ tomar como referencia los datos reportados a P1= 760 mm Hg (T1= 353.85 K).
- Ejemplo: Considerando una P2 = 582.8 mm Hg, se despeja T2 de la ecuación de Clausius-Clapeyron:

Ln (P2/P1) = $(-\Delta H v / R)(1/T2 - 1/T1)$

 $\Delta H = 33001.3 \text{ j/mol}$

Un ejemplo de despeje es el siguiente:


 $1/T_2 = Ln(P_2/P_1) / \Delta H/R + 1/T1 = \rightarrow T2 = 345.66 K \rightarrow 72.51 °C$

- **c.** Calcular una temperatura (T2) en un punto de equilibrio S-V. a partir de la ecuación de Clausius- Clapeyron
 - Este punto puede calcularse utilizando como referencia el punto triple experimental (____mm Hg, ___ K) y el ΔH sublimación teórico (ΔHvap teórico +ΔHfus teórico)
 - Ejemplo: Considerando una presión menor a la del punto triple, como 30 mm Hg de presión absoluta, y utilizando la ecuación de C-C para despejar T2

Ln (P2/P1) = $(-\Delta Hv/R)(1/T2 - 1/T1)$


Datos experimentales punto triple

- ightharpoonup Patm 777.7 mb = 77,770 Pa \rightarrow Patm _____mm Hg
- ▶ P vacío = ____ __ = ____cm Hg = ___ mm Hg
- ▶ Pabs= Patm P vacio = ____ mmHg


Temperatura punto triple

6.5 °C = 279.65 K

Datos experimentales Equilibrio Líquido vapor a Presión de laboratorio

ightharpoonup P atm 777.7 mb = 77,770 Pa \rightarrow Patm ____mm Hg

Datos experimentales Equilibrio Sólido Líquido a Presión de laboratorio

▶ Patm 777.7 mb = 77,770 Pa \rightarrow Patm ____mm Hg

Temperatura equilibrio Solido Líquido: ____°C

Tabla 1. Datos experimentales, reportados y calcul<mark>ados</mark>, para las diferentes transiciones de fase.

	Equilibrio	Proceso	P(mmHg)	T/ (°C)	T/ (K)
Datos experimentales	S-L	Punto de fusión	585	6.5	
	L-V	Punto de ebullición	585	72	
	S-L-V	Punto triple	36.32	6.5	
Datos teóricos	S-L (∆H _f = 2680. J mol ⁻¹)	Punto de fusión normal	760		279.62
	L-V (∆H _v =27,759J mol-1)	Punto de ebullición normal	760		353.85
	Condiciones críticas				
Datos calculados	L-V (∆H _v = 33 334 J mol ⁻¹)	Evaporación			
	S-V (∆H _{sub} = 36,014 J mol ⁻ ¹)	Sublimación			
	S-L (ΔH _{fus} = 2680 J mol ⁻¹)				

Tabla 1. Datos experimentales, reportados y calculados, para las diferentes transiciones de fase.

	Equilibrio	Proceso	P(mmHg)	T/ (°C)	T/ (K)
Datos	S-L	Punto de fusión	582.8	6.5	279.65
experimentales	L-V	Punto de ebullición	582.8	72	343.15
	S-L-V	Punto triple	36.8	6.5	279.65
Datos teóricos	S-L $(\Delta H_f = 2662.6. J \text{ mol}^{-1})$	Punto de fusión normal	760	6.47	279.62
	L-V (ΔH _v =33,001 J mol-1)	Punto de ebullición normal	760	80.7	353.85
	Condiciones críticas		40.22 atm	280.49	553.64
Datos	L-V	Evaporación	31,984		
calculados	$(\Delta H_v = J \text{ mol}^{-1})$				
	S-V	Sublimación	35663.9		
	$(\Delta H_{sub} = 35663.9 \text{ J} \\ \text{mol}^{-1})$				

e) Tabla 2. Ordenar los datos de la tabla 1 en orden decreciente de presión.

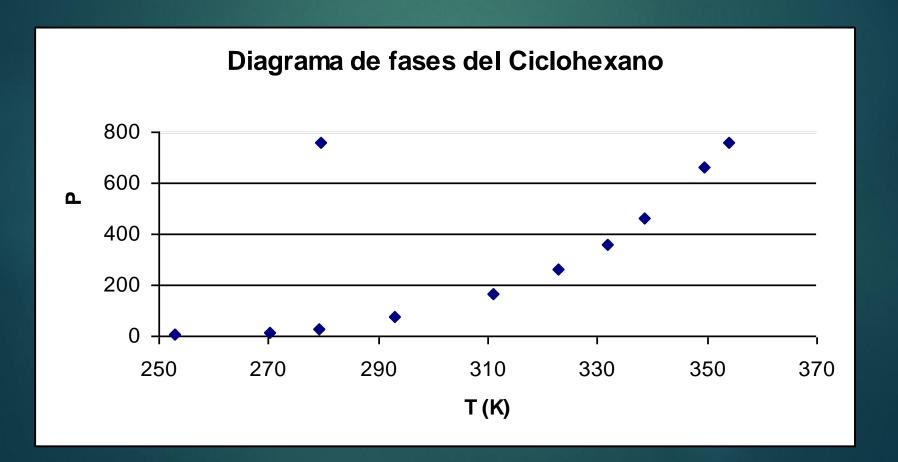
$$1/T_2 = Ln(P_2/P_1) /- \Delta H/R] + 1/T1 \rightarrow T_2$$

 $P_1 = 760 \text{ mm Hg}$ $T_1 = 353.85$ $P_2 = 585 \text{ mm Hg}$ T = ?? $\Delta H = 33001.3 \text{ j/mol}$

rojo: experimental

Azul: teóricos

Verdes: calculados


Eq. S-V

 $P_1 = 36.8 \text{ mm Hg}$ $T_1 = 279.65 \text{ K}$ $P_2 = \text{mm Hg}$ T2 = ?? $\Delta Hs = 35663.9 \text{ j/mol}$

L-	V(*1)		S-L	S	-V
P	T	Р	T	P	T
825	355.78	760	280.00	<mark>36.8</mark>	279.65
760	353.89	582.8	345.15	33	277.67
625	347.82	36.8	279.65	28	274.75
582.8	345.15			23	271.33
505	341.44			18	267.19
425	336.45			13	261.88
325	328.93				
225	319.24				
125	304.83				
36.8	279.65				

A6. ELABORACIÓN DE GRÁFICOS

▶ 1. Trazar el diagrama de fases presión (mmHg) en función de temperatura (K) para el ciclohexano con los datos registrados en la tabla 2.

A7. ANÁLISIS DE RESULTADOS

- ▶ 1. Calcular el número de grados de libertad en los puntos del diagrama de fases del ciclohexano indicados en la tabla 2 y explicar su significado.
- ▶ **Tabla 2.** Grados de libertad calculados para distintas regiones del diagrama de fases del ciclohexano.

	Fases (F)	Grado de libertad (L)	Significado
Área	1		
Sobre las líneas	2		
Punto triple.	3		