DETERMINACIÓN DE LA LEY EXPERIMENTAL DE RAPIDEZ. ESTUDIO DE LA CINÉTICA DE YODACIÓN DE LA ACETONA.

I. OBJETIVO GENERAL

Comprender que la composición de un sistema reaccionante cambia con el tiempo.

II. OBJETIVOS PARTICULARES

- **a.** Seleccionar las variables que permitan determinar el cambio de la composición con el tiempo.
- **b.** Elegir la técnica analítica adecuada para determinar los cambios en la composición del sistema reaccionante.
- c. Encontrar un modelo matemático (ley de rapidez) aplicando el método integral.
- d. Explicar el fundamento del método de aislamiento de Ostwald y su utilidad en el diseño de un estudio cinético.

III. PROBLEMA

 Determinar la ley experimental de rapidez de la reacción de yodación de la acetona.

A1. CUESTIONARIO PREVIO. Contestar el siguiente cuestionario previo antes de iniciar con la parte experimental

- 1. ¿Qué es un reactivo limitante?
- 2. Definir ecuación de rapidez
- 3. Definir orden de reacción
- 4. Definir constante de rapidez
- 5. Escribir las ecuaciones para los órdenes o, 1º y 2º para una reacción de tipo A→B
- 6. ¿Qué proporcionalidad guarda la rapidez y la concentración en una reacción de o, 1º y 2º orden?
- 7. ¿Cuál es la estructura química de la acetona?
- 8. ¿Qué longitud de onda absorbe el yodo?
- 9. ¿Cómo se podrían expresar las ecuaciones integradas de rapidez de los diferentes ordenes, en función de absorbancias en lugar de concentraciones y cómo justificarías esta sustitución?

Cinética Química

- El área de la química que esta relacionada con la rapidez a la que ocurren las reacciones, se conoce como cinética química.
- Factores que modifican la rapidez de una reacción:
 - Concentración
 - Temperatura
 - pH
 - Fuerza iónica
 - Catalizador.
- La rapidez de un evento se define como el cambio que ocurre en un intervalo dado de tiempo.

Rapidez de una reacción

Se puede hablar de la rapidez de una reacción.

$$A \rightarrow B$$

La rapidez de esta reacción es una medida de que tan rápido el compuesto A se consume o que tan rápido el compuesto B se forma.

Por lo tanto dado un intervalo de tiempo, se puede expresar la rapidez promedio de la reacción como el incremento en el número de moles de B en el intervalo.

- La estequiometría de la reacción señala que una molécula de A se consume por cada molécula de B que se forma.
- Por lo tanto para cualquier tiempo, el numero de moles de que se consume es igual al numero de moles de B que se forman (Δ B), pero de signo contrario, por lo tanto:

La importancia de la cinética química es que nos ayuda a:

- Predecir fechas de caducidad de: alimentos, fármacos, cosméticos y reactivos.
- Obtener datos de tiempo de vida media de un reactivo, producto o fármaco entre otros
- Predecir condiciones de almacenamiento
- Establecer la estabilidad de las sustancias
- Establecer condiciones óptimas de síntesis
- Predecir el rendimiento en diferentes condiciones de reacción

Ecuación de rapidez:

Ecuación de rapidez:

seudo orden

$$A^{\alpha} + B^{\beta} \rightarrow C^{\chi} + D^{\delta}$$

$$\frac{dC}{dt} \propto \mathbf{C}^{\alpha}_{\mathsf{A}}$$

$$\frac{dC}{dt} \propto C^{\beta}_{B}$$

$$\frac{dC}{dt} \propto C^{\alpha}_{A} \qquad \frac{dC}{dt} \propto C^{\beta}_{B} \qquad \frac{dC}{dt} \propto C^{\alpha}_{A} C^{\beta}_{B}$$

para quitar ∞ se pone una constante $r \propto C \rightarrow r = KC$

$$r \propto C \rightarrow r = KC$$

$$\frac{dC}{dt} = \operatorname{Kn} C^{\alpha}_{A} C^{\beta}_{B}$$

si
$$\mathbf{r} = \frac{dC}{dt}$$
 formación de productos; \mathbf{o} $\mathbf{r} = -\frac{dC}{dt}$ descomposición de reactivos

$$r = Kn C^{\alpha}_{A} C^{\beta}_{B}$$
 donde Kn es la constante global de rapidez

Para una reacción con estequiometría independiente del tiempo, en la que la relación de reactivos y productos no es uno a uno, la expresión de la rapidez esta dada por:

$$A^{\alpha}$$
 + 2B β \rightarrow 3C χ + D δ

La rapidez de conversión es r =
$$-\frac{dC_A}{dt}$$
 = -1/2 $(\frac{dC_B}{dt})$ = 1/3 $(\frac{dC_C}{dt})$ = $\frac{dC_D}{dt}$

mol/dm³s o mol/ cm³ s

$$-\frac{dC_A}{dt} = -\frac{1}{2}\frac{dC_B}{dt} = \frac{1}{3}\frac{dC_C}{dt} = \frac{dC_D}{dt}$$

Metodo de Ostwald

$$A^{\alpha}$$
 + $B\beta$ \rightarrow $C\chi$ + $D\delta$

Suponemos $C_B >> C_A$ es decir C_B = cte aparente y C_A = reactivo limitante

Reareglando la ecuación de rapidez
$$r = Kn C^{\beta}_{B} C^{\alpha}_{A}$$

Kps donde Kps = cte de seudo orden

Descomposición de reactivos

r = Kps
$$C^{\alpha}_{A}$$
 sustituyendo r = $-\frac{dC}{dt}$ la ecuación queda: $-\frac{dC_{A}}{dt}$ = Kps C^{α}_{A} multiplicando por -1

$$\frac{dC_A}{dt} = - \text{Kps } C^{\alpha}_A$$

Método de Ostwald:

```
Suponemos C_B >> C_A es decir C_B = cte aparente C_A = cte reactivo limitante
Rea reglando la ecuación de rapidez r = Kn C\beta_R C\alpha_A
                                                Kps√ donde Kps = cte de seudo orden
                           Descomposición de reactivos
r = Kps C\alpha_A sustituyendo r = -\frac{la ecuación queda: - = Kps C\alpha_A}{multiplicando por -1}
Kps Cα
A\alpha + B\beta + C\chi + D\delta \longrightarrow Producto
r = Kn C\alpha_A C\beta_B C\alpha_C C\delta_D
C_B, C_C, C_D >> C_A
\alpha = 0; = - Kps C\alpha, = - Kps C0, = - Kps; dC<sub>A</sub> = - Kps dt = - Kps queda C<sub>At</sub> = - Kps t + C<sub>A0</sub>
```

ecuación experimental de rapidez

$$r_i = f\left(C_x^{\alpha} C_y^{\beta}\right)$$

Sea la reacción: X+Y P

En general la rapidez :

Donde α y β son los órdenes respecto a X e Y respectivamente y se conocen como órdenes parciales; a la suma (α + β) = n total se le conoce como orden total o global de la reacción.

 α y β NO son los coeficientes estequiométricos, se obtienen experimentalmente.

Existen órdenes enteros (0,1,2,3,...n) y órdenes fraccionarios

Orden de reacción

$$n = 0$$

$$C_{At} = -Kps t + C_{A0}$$

$$n = 1$$

$$ln C_{At} = -Kps t + ln C_{A0}$$

$$n = 2$$

$$1/A_t = Kps t + 1/A_o$$

$$n = 0$$

$$C = -Kps t + C_o$$

$$n = 1$$

$$ln C = -Kps t + ln C_o$$

$$n = 2$$

$$1/C = Kps t + 1/C_o$$

Si n = o $r = f(C^{\circ})$ y por tanto r es independiente de la concentración.

Si n > o entonces r varía exponencialmente con la "enésima" potencia de la o las concentraciones.

La información de utilidad práctica que se obtiene a partir del conocimiento del orden de reacción, es la magnitud de la influencia de la concentración de ese reactivo sobre la rapidez; así como sobre la forma que tiene la función: $r = f(C^n)$, es decir como es la gráfica obtenida.

MATERIALY REACTIVOS

I₂ – KI (0.002 M – 0.2M) Acetona 1.33 M HCI 0.323 M

1 espectrofotómetro

2 celdas espectrofotométricas

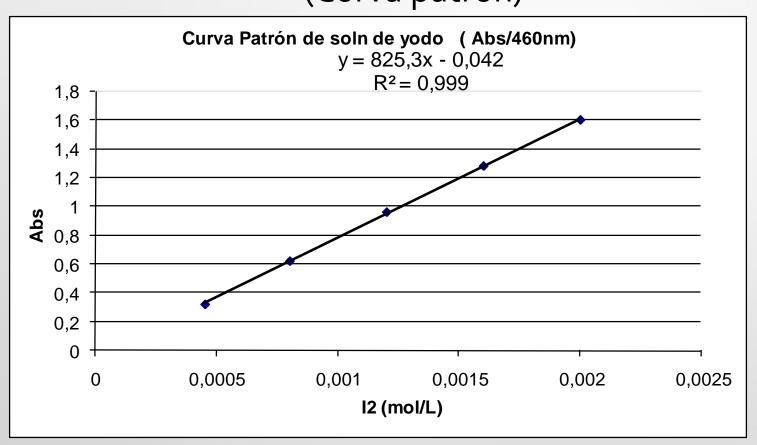
1 cronómetro

1 termómetro

4 vasos de precipitados de 50 ml

$$CH_3 - CO - CH_3 + I_2 \xrightarrow{H^+} CH_3 - CO - CH_2I + HI$$

$$v = k_{abs} [Acet]^{\alpha} [H^+]^{\beta} [I_2]^{\gamma}$$


PROCEDIMIENTO EXPERIMENTAL

- Calibración del espectrofotómetro
- Encender el espectrofotómetro
- Esperar 15 minutos
- Calibración: oprimir la tecla MODE, hasta que la luz roja se encuentre en A (absorbancia)
- Seleccionar la longitud de onda girando la perilla
- Introducir la celda con el blanco de agua destilada que es el referencia (con un volumen por arriba de la mitad; nunca llena) en la porta- celda, oprime la tecla Λ (oA/100%T) y esperar a que se ponga en ceros la absorbancia.
- Considerar la flecha que se encuentra en una cara y debe coincidir con la marca del equipo o dirigirla al frente o la izquierda según el equipo a usar.
- Nota: Calibrar con el blanco en una celda.

Diluciones para curva patrón

	Mezcla	I ₂ (0.002 M) (ml)	H ₂ O (ml)	I ₂ mol/L	Abs
	1	5	0		
	2	4	1		
	3	3	2		
	4	2	3		
	5	1	4		

Trazar la gráfica Absorbancia vs. Concentración (Curva patrón)

DETERMINACION EXPERIMENTAL DE LA RAPIDEZ

- 1. En un vaso de precipitados mezclar 4 mL de acetona 1.33 M y 2 mL de HCL 0.323 M
- 2. Agregar a otro vaso 4 mL de la solución yodo-yodurada o.oo2M
- 3. Ya que se ajusto a o el equipo con el blanco, agregar la mezcla de acetona-acido al vaso que contiene la solución de yodo,
- 4. En ese momento accionar el cronómetro, mezclar rápidamente trasvasar la solución de reacción a la celda (un 80% del volumen total de la celda).
- 5. Hacer determinaciones de absorbancia cada o.5 min (dejar la celda en el equipo) hasta completar 20 minutos. Anotar los datos en la tabla 1.

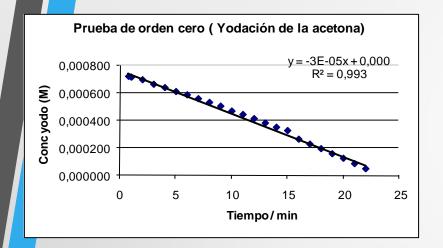
Corridas experimentales

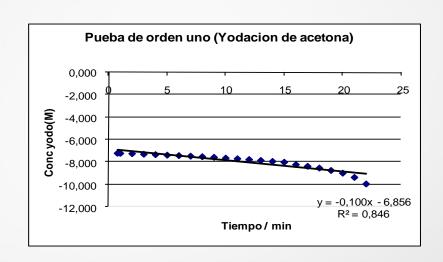
# serie o corrida	Sol I ₂	Acetona 1.33 M	H ₂ o	HCL
1	4	4	0	2

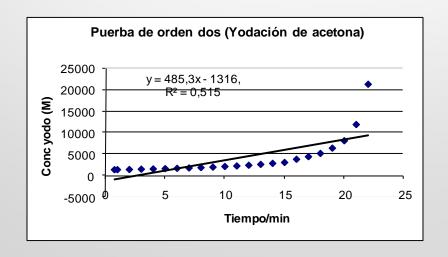
TABLA 1

Registrar los datos de tiempo y absorbancia, calcular la concentración de yodo, su logaritmo y su inversa.

T (min)	Abs	C (mol/L)	In C	1/C
30				
60				
90				
120				
150				
180				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				


Graficas


- Traza las gráficas de:
 - C vs t
 - In C vs t
 - **1/C** vs t.
- Calcular la pendiente (m) y el coeficiente de correlación (r).


Resultados

Establecer el orden de la reacción en función del Yodo para la reacción de yodación de la acetona

Orden de reacción método integral

