Huevo

Propiedades de las proteínas de la clara. Complete los datos indicados.

Proteína	Abundancia en la clara (%)	Actividad biológica	Número o porcentaje de -S-S- o -SH	Propiedad funcional principal en la que participa
Ovoalbúmina				
Conalbúmina				
Ovomucoide				
Globulina G2				
Globulina G3				
Ovomucina				
Lisozima				
Ovoglucoproteína				
Flavoproteína				
Ovoinhibidor				
Avidina				
Inhibidor de ficina				

Reacciones de HUEVO FRESCO en almacenamiento

Alcalinización

Escriba los equilibrios que expliquen la formación de HCO₃⁻ a partir de H₂CO₃ y la generación de HO- a partir de HCO₃⁻.

Después de la alcalinización, que es el primer paso del deterioro, en almacenamiento se presenta lo siguiente (escriba los mecanismos):

Albumen denso → fluido:

R-CH₂-S-S-CH₂-R (proteínas del albumen denso) + ${}^{-}$ OH \rightarrow R-CH₂-S ${}^{-}$ + HO-S-CH₂-R Albumen fluido \rightarrow denso:

 $R-CH_2-S^- + R-CH_2-SH$ (proteínas del albumen fluido) $\rightarrow R-CH_2-S-CH_2-R + HS^-$

La hidrólisis del enlace amida de asparagina unida a un carbohidrato es también una reacción que explica una mayor fluidez del albumen. Escriba la hidrólisis de parte de sacárido.

Acción bacteriana en la yema (escriba el mecanismo):

Fosfatidilcolina fosfatidiletenol

La clara más de treinta días almacenada (> 20° C) puede descomponerse mediante reacciones de proteólisis bacteriana facilitada por el debilitamiento de las membranas del huevo. Posteriormente, se presenta aminólisis y β -eliminación de sulfuro de hidrógeno (H_2S) a partir de las albúminas que contienen Cys. A continuación, el H_2S puede reaccionar con el Fe^{3+} de la yema y formar Fe_2S_3 (sulfuro de hierro III, verde) o, bien, con el Fe^{2+} para dar FeS (sulfuro de hierro II, negro) cuando el E° es más reductor (asociado a un mayor grado de descomposición; escriba un mecanismo de proteólisis, y de la β -eliminación en la cisteína) y la formación de sulfuro ferroso:

Formación de dehidroalanina (DHA) y sulfuro férrico a partir de cisteína mediante una reacción de β -eliminación:

$$H_{2}N$$
 $H_{2}N$
 H

Reacciones durante el tratamiento térmico en el huevo fresco y en ovoproductos líquidos

Reacción en huevo entero o yema almacenada o calentada. La reacción mostrada determina una menor disponibilidad de los fosfolípidos y un cambio en las propiedades funcionales en función del tiempo de almacenamiento o de exposición al tratamiento térmico (Escriba el mecanismo):

Reacciones de Maillard con fosfatidiletanolamina. El producto de Amadori formado lleva a una menor disponibilidad de fosfolípidos.

Reacciones de la clara o el huevo entero líquido durante el almacenamiento o tratamiento térmico. Algunas reacciones de descomposición de aminoácidos debido al almacenamiento o al tratamiento térmico son las siguientes: I) oxidación de metionina para formar sulfóxido de metionina por la presencia de peróxido proveniente de la oxidación de glucosa con glucosa-oxidasa; II) formación de DHA por dos vías, (1) a partir de cisteína (lo que explica también la generación de H₂S, no necesariamente por putrefacción), y 2) a partir de cistina, produciéndose también anión disulfuro; y III) formación de lisinoalanina, ornitoalanina, lantionina e histidinilalanina (Desarrolle los mecanismos mostrados):

Reacciones en ovoproductos en polvo y congelados

Se presentan en huevo entero y yema deshidratados, así como en leche entera, semidescremada e incluso en leche descremada en polvo; también en crema en polvo.

La secuencia de reacciones de la oxidación comprende la foto y la autooxidación, y se muestra a continuación, siendo la riboflavina (vitamina B₂) en el caso del huevo, y de los lácteos, el fotosensibilizador que promueve los procesos oxidativos, ya que es abundante tanto en la clara como en la yema y, desde luego, en el huevo entero:

Pigmento
$$\xrightarrow{hv}$$
 Pigmento*

Pigmento*

 O_2
 $O_2^* = O=O^* = oxigeno singulete$
 O_2
 O_2
 O_3
 O_4
 O

La descomposición de lípidos genera nuevos radicales y carbonilos.

- Carbonilo → rancidez, cambio en el valor nutrimental y en las propiedades funcionales, potencial toxicidad
- Carbonilos + grupos amino de las proteínas → entrecruzamientos →
 digestibilidad ↓, ya que se ven afectadas propiedades funcionales de las
 proteínas del huevo entero y de la yema o de los alimentos con aw baja que los
 contienen.

Los radicales generados pueden a su vez auto-oxidar lípidos como el colesterol. Con ello se generan oxiesteroles de importancia toxicológica en enfermedades cardiovasculares y crónico-degenerativas (Desarrolle los mecanismos de las reacciones indicadas):