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ABSTRACT: Machine learning models are poised to make a transformative impact on
chemical sciences by dramatically accelerating computational algorithms and amplifying
insights available from computational chemistry methods. However, achieving this requires a
confluence and coaction of expertise in computer science and physical sciences. This Review
is written for new and experienced researchers working at the intersection of both fields. We
first provide concise tutorials of computational chemistry and machine learning methods,
showing how insights involving both can be achieved. We follow with a critical review of
noteworthy applications that demonstrate how computational chemistry and machine
learning can be used together to provide insightful (and useful) predictions in molecular and
materials modeling, retrosyntheses, catalysis, and drug design.
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1. INTRODUCTION

1.1. Background

A lasting challenge in applied physical and chemical sciences
has been to answer the question: how can one identif y and
make chemical compounds or materials that have optimal
properties for a given purpose? A substantial part of research in
physics, chemistry, and materials science concerns the
discovery and characterization of novel compounds that can
benefit society, but most advances still are generally attributed
to trial-and-error experimentation, and this requires significant
time and cost. Current global challenges create greater urgency
for faster, better, and less expensive research and development
efforts. Computational chemistry (CompChem) methods have
significantly improved over time, and they promise paradigm
shifts in how compounds are fundamentally understood and
designed for specific applications.
Machine learning (ML) methods have in the past decades

witnessed an unprecedented technological evolution enabling a
plethora of applications, some of which have become daily
companions in our lives.1−3 Applications of ML include
technological fields, such as web search, translation, natural
language processing, self-driving vehicles, control architectures,
and in the sciences, for example, medical diagnostics,4−8

particle physics,9 nano sciences,10 bioinformatics,11,12 brain-
computer interfaces,13 social media analysis,14 robotics,15,16

and team, social, or board games.17−19 These methods have
also become popular for accelerating the discovery and design
of new materials, chemicals, and chemical processes.20 At the
same time, we have witnessed hype, criticism, and misunder-
standing about how ML tools are to be used in chemical
research. From this, we see a need for researchers working at
the intersection of CompChem+ML to more critically
recognize the true strengths and weaknesses of each
component in any given study. Specifically, we wanted to
review why and how CompChem+ML can provide useful
insights into the study of molecules and materials.
While developing this Review, we polled the scientific

community with an anonymous online survey that asked for
questions and concerns regarding the use of ML models with
chemistry applications. Respondents raised excellent points
including:

1. ML methods are becoming less understood while they
are also more regularly used as black box tools.

2. Many publications show inadequate technical expertise
in ML (e.g., inappropriate splitting of training, testing,
and validation sets).

3. It can be difficult to compare different ML methods and
know which is the best for a particular application or
whether ML should even be used at all.

4. Data quality and context are often missing from ML
modeling, and data sets need to be made freely available
and clearly explained.

Additionally, when asked about the most exciting active and
emerging areas of ML in the next five years, respondents
mentioned a wide range of topics from catalysis discovery, drug
and peptide design, “above the arrow” reaction predictions,
and generative models that promise to fundamentally trans-
form chemical discovery. When asked about challenges that
ML will not surmount in the next five years, respondents
mentioned modeling complex photochemical and electro-
chemical environments, discovering exact exchange-correlation
functionals, and completely autonomous reaction discovery.
This Review will give our perspective on many of these topics.
As context for this Review, Figure 1 shows a heatmap

depicting the frequency of ML keywords found in scientific
articles that also have keywords associated with different
American Chemical Society (ACS) technical divisions.
Preparing this figure required several steps. First, lists of ML
keywords were chosen. Second, lists of keywords were created
by perusing ACS division symposia titles from over the past
five years. Third, Python scripts used Scopus Application
Programming Interfaces (APIs) to identify the number of
scientific publications that matched sets of ML and division
symposia keywords. Figure 1 elucidates several interesting
points. First, the most popular ML approaches across all
divisions are clearly neural networks, followed by genetic
algorithms and support vector machines/kernel methods.
Second, divisions such as physical (PHYS), analytical
(ANYL), and environmental (ENVR) are already using diverse
sets of ML approaches, while divisions such as inorganic
(INOR), nuclear (NUCL), and carbohydrate (CARB) are
primarily employing more distinct subsets of approaches, while
other divisions, such as educational (CHED), history (HIST),
law (CHAL), and business-oriented divisions (BMGT and
SCHB), that is, divisions that produce much fewer scholarly
journal articles, are not linking to publications that mention
ML. Third, ML has had more prevalence across practically all
divisions over time. For further insight, Table 1 lists the top
four keywords obtained from recent ACS symposium titles, as
well as their respective contribution percentage reflected in
Figure 1. There, one sees that a handful of keywords can
significantly overshadow matches in some of the bins, for
exampled, “electro”, “sensor”, “protein”, and “plastic”. With any
ML application, there will be a risk of imperfect data or user
bias, but this is a useful launch point to appreciate how and
where ML is being used in chemical sciences. A key takeaway
is that we are witnessing an unprecedented crescendo in
interest in ML over the last ten years (e.g., Figure 1c) thanks to
improved understanding of the intersectionality of traditional
science and engineering disciplines with rapidly evolving
disciplines such as CompChem and data science.
1.2. Motivation for This Review

The survey results and literature analysis above showed an
opportunity for a tutorial reference to help readers address
future research challenges that will require joint applications of

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00107
Chem. Rev. 2021, 121, 9816−9872

9817

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 1. Heatmaps illustrating the extent that ML terms appear in scientific papers aligned by American Chemical Society (ACS) technical
divisions from 2000 to 2010 (a) and from 2010−present (b). (c) Line graph showing the number of occurrences of any ML term being found in
papers attributed to the ACS PHYS division, from 2000−present. Figures were made by Charles D. Griego. Python scripts used to generate these
figures and corresponding Table 1 are freely available with a creative commons attribution license. Readers are welcome to use, adapt, and share
these scripts with appropriate attribution: https://github.com/keithgroup/scopus_searching_ML_in_chem_literature.).
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CompChem, ML, and chemical and physical intuition (CPI).
This review will classify concepts using a rendition of a “data to
wisdom” hierarchy, Figure 2. Scholars have noted short-
comings with similar constructs,21 but we use it to reflect a
stepladder for scientific progress, starting from collecting data
and ending with overall impact. CompChem, ML, and CPI
each have different strengths and weaknesses and bring
synergistic opportunities. CPI alone can be employed to
climb the ladder from data to impact, but current CPI may
only provide limited understanding or applicability outside of
available data sets. However, CompChem is extraordinarily
well-suited for generating high quality data that contain useful
information (vide infra, section 2) often more easily than via
traditional experimentation. ML is likewise extremely well-
suited for recognizing and accurately quantifying nonlinear
relationships (vide infra, section 3), a task that is especially
difficult for even the most expert-level CPI alone. A key
opportunity is that useful ML requires robust data sets, and
these can be provided by CompChem as long as the CPI
component is selecting and correctly interpreting appropriate
methods for the task at hand to productively climb the ladder
toward impact (vide infra, section 4). We stress that the impact
generation process shown in Figure 2 is by no means a linear
one  on the contrary, it contains many loops and dead ends.

Figure 2. Data−knowledge−wisdom hierarchy stepladder.

Table 1. List of Top Ranked Keywords (Per ACS Division) with Corresponding Percentage of Matches for Any ML Term

division rank 1 rank 2 rank 3 rank 4

PHYS electro* (56.3%) spectroscopy (9.7%) ion* (6.0%) nano* (5.5%)
ANYL sensor* (55.4%) spectroscopy (13.1%) characterization* (11.6%) spectrometry (4.3%)
ENVR *sensor* (60.9%) soil* (14.5%) water quality (4.2%) environmental monitor* (3.0%)
AGFD protein* (31.9%) agricultur* (18.2%) food (10.8%) fruit* (5.7%)
ENFL fuel* (19.2%) petroleum (11.6%) energy efficiency (11.1%) batter* (10.7%)
AGRO soil (43.3%) crop* (25.4%) groundwater (11.5%) developing countr* (4.4%)
ORGN protein* (64.6%) amino acid* (19.7%) peptide* (8.4%) aromatic* (3.2%)
POLY plastic* (51.1%) polymer* (37.7%) polymeriz* (5.0%) polymeric (2.8%)
PMSE *polymer* (50.4%) *peptide* (30.4%) thin film* (8.9%) tissue engineering (4.3%)
BIOT biochemi* (37.9%) biophysic* (18.3%) systems biology (10.3%) biotechnology (9.9%)
GEOC groundwater (33.4%) mining (31.6%) *geochem* (12.4%) anthropogenic (10.9%)
MEDI protein interaction* (25.7%) drug discovery (19.1%) drug design (19.1%) antibiotic* (11.3%)
COMP drug discovery (18.7%) drug design (18.6%) molecular model* (14.3%) protein database* (13.1%)
COLL nanoparticle* (21.2%) adsorption (19.6%) thin film* (14.9%) tribolog* (9.6%)
BIOL drug discovery (41.9%) protein folding (19.3%) biosynthesis (12.2%) cytochrome* (12.2%)
TOXI toxi* (99.2%) chemical exposure* (0.6%) antibody drug conjugate* (0.1%)
CATL cataly* (64.0%) metal oxides (20.2%) photocataly* (5.3%) surface chemistry (2.8%)
CINF drug discovery (51.7%) computational chemistry

(17.5%)
bio* modeling (7.8%) chem* database* (7.6%)

INOR electrochem* (67.1%) nanomaterial* (14.9%) organometallic* (5.8%) metal organic framework* (4.0%)
NUCL nuclear fuel* (28.6%) isotope* (27.3%) radioisotope* (15.0%) nuclear medicine* (9.0%)
CARB carbohydrate* (43.0%) glycoprotein* (42.4%) glycan* (6.6%) oligosaccharide* (5.6%)
RUBB rubber* (100.0%)
CELL cellulose (41.7%) polysaccharide* (26.3%) lignin (16.3%) lignocellulos* (9.7%)
I&EC water purification (38.1%) industrial chem* (23.7%) rare earth element* (11.9%) industrial and engineering chemistry

(8.3%)
FLUO fluorine* (99.8%) radiopharmaceutical chem*

(0.2%)
CHED chem* class* (76.4%) chem* communication* (8.5%) chem* educat* (5.5%) lab* safety (5.5%)
CHAS chem* safety (51.5%) lab* safety (16.7%) environmental health and safety

(16.7%)
chem* regulations (15.2%)

BMGT chem* compan* (65.4%) chem* enterprise* (28.8%) chem* business* (3.8%) chem* research and development (1.9%)
SCHB commercial chem* (50.0%) chem* sector* (28.6%) academic entrepreneur* (14.3%) science advoca* (7.1%)
HIST chem* histor* (53.8%) evolution of chem* (30.8%) history of chem* (15.4%)
PROF chem* education (100.0%)
CHAL pharmaceutical patent*

(60.0%)
chem* in commerce (30.0%) chem* patent* (10.0%)
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As we show later (in Section 4), within the troika of
CompChem+ML+CPI, ML acts as a catalyst that accelerates
explorative data-driven hypotheses generation. Automatically
generated hypotheses are then validated and calibrated with
CompChem and CPI to yield further improved ML modeling
(enriched by more physical prior knowledge), which then
loops back with improved hypotheses. This feedback loop is
the key to the modern knowledge discovery leading to insight,
wisdom and hopefully positive impacts to society.

2. COMPCHEM AND NOTABLE INTERSECTIONS WITH
ML

2.1. Computational Modeling, Data, and Information
Across Many Scales

We consider quantum mechanics as described by the
nonrelativistic time-independent Schrödinger equation as our
“standard model” because it accurately represents the physics
of charged particles (electrons and nuclei) that make up almost
all molecules and materials. Indeed, this opinion has been held
by some for almost a century:

The fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to
equations that are too complex to be solved.

P. A. M. Dirac, 1929
Any theoretical method for predicting molecular or material

phenomena must first be rooted in quantum mechanics theory
and then suitably coarse-grained and approximated so that it
can be applied in a practical setting. CompChem, or more
precisely, computational quantum chemistry defines computa-
tionally driven numerical analyses based on quantum
mechanics. In this section, we will explain how and why
different CompChem methods capture different aspects of
underlying physics. Specifically, this section provides a concise
overview of the broad range of CompChem methods that are
available for generating data sets that would be useful for ML-
assisted studies of molecules and materials.
2.1.1. Models and Levels of Abstraction. Models

extract information from data. The renowned statistician
George Box famously discussed “good models” as those
characterized as “simple”, “illuminating”, and “useful”.22 Good
models should be parsimonious and describe essential relation-
ships without overelaboration. The ideal gas equation, PV =
nRT, exemplifies a good model. The ideal gas equation relates
macroscopic pressure (P), volume (V), number of molecules
(n), and temperature (T) of gases under idealized conditions,
without requiring explicit knowledge of the processes occurring
on an atomic scale. Its simple functional form needs just one
parameter, the ideal gas constant R, and this makes it possible
to formulate useful insights, such as how at constant pressure a
gas expands with rising temperature. On the other hand, this
elegant equation only holds for conditions where the gas
behaves as an ideal gas. The derivation of more accurate
models of gases requires more mathematically complicated
equations of state that rely on more free parameters23 that in
turn obfuscate physical insights, require more computational
effort to solve, and thus make the model less “good”. This
example also offers a convenient connection to ML models
that will be discussed later in section 3. As mathematical
models for complex phenomena become more complicated
and less intuitive to derive, ML models that infer nonlinear

relationships from data become more applicable when
increasing amounts of empirical data become available.
Alternatively, the conventional CompChem treatment

entails first determining the system’s relevant geometry and
its total ground state energy, and from that physical properties
of interest (e.g., pressure, volume, band gap, polarizability, etc.)
can be obtained using quantum and statistical mechanics. In
this section, we discuss the relevant CompChem methods for
these. While the mathematical physics for these methods might
occasionally be too complicated for a user to fully understand,
many algorithms exist so that they can still be easily run in a
“black-box” way with modern computational chemistry
software and accompanying tutorials.24−27 CompChem thus
serves as an invaluable tool to generate data and information
for knowledge and insights across many length and time scales.
Figure 3 is an adaption of a multiscale hierarchy of different

classes of CompChem methods. It shows their applicability for
modeling different length and time scales and depicts how
large scale models may be developed based on smaller scale
theories.

2.1.2. CompChem Representations. Integral to every
CompChem study is the user’s representation for the system,
that is, how the user chooses to describe the system.
CompChem representations can range from simple and lucid
(e.g., a precise chemical system such as a water molecule
isolated in a vacuum) to complex and ambiguous (e.g., a
putative but speculative depiction of a solid−liquid interface
under electrochemical conditions). Approximate wavefunc-
tions (expressed on a basis set of mathematical functions) or
approximate Hamiltonians (referred to as levels of theory) as
described below in this section can also be considered
representations. One might then say that many representations
for different components of a system will constitute an overall
representation, and this is true. The point we make is that the
validity of any computational result depends on the overall
representation, and sometimes an incorrect representation may
provide a correct result due to “fortuitous error cancellation”.
In CompChem studies, a valid representation is one that
captures the nature of the physical phenomena of a system. For
a molecular example, if one is determining the bond energy of
a large biodiesel molecule using CompChem methods,28 it
may or may not be justified to approximate a nearby long-chain

Figure 3. Hierarchy of computational methods and corresponding
time and length scales. QM stands for Quantum Mechanics.
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alkyl group (−CnH(2n+1)) simply as a methyl (−CH3) or even a
hydrogen atom. Indeed, choosing such a representation can
sometimes be a useful example of CPI since alkyl bonds usually
exhibit relatively short-ranged interactions (a feature that will
be discussed in the context of ML in more detail in section
4.1.3.). An atomic scale geometry with fewer atoms would
reduce the computational cost of the study or allow a more
accurate but more computationally expensive calculation to be
run. On the other hand, it might also be a poor choice if the
chemical group, for example, a substituted alkyl group
participated in physical organic interactions, such as subtle
steric, induction, or resonance effects.29 For a solid-state
example, a user might exercise good CPI by assuming that a
relatively small unit cell under periodic boundary conditions
would capture salient features of a bulk material or a material
surface (as is often the case for many metals). On the other
hand, subtle symmetry-breaking effects in materials (e.g.,
distortions arising from tilting octahedra groups in perov-
skites,30 or surface reconstruction phenomena that occur on
single crystals)31 might only be observed when considering
larger and more computationally expensive unit cells. Relevant
to both examples, it may also be that the CompChem method
itself brings errors that obfuscate phenomena that the user
intends to model. In general, CompChem errors may be due to
1) errors introduced by the user in the initial set up of the
CompChem application, or 2) errors in the CompChem
method when treating the physics of the system. In section 3,
we will discuss how the choice of ML representation also plays
similarly critical roles in determining whether and to what
extent an ML model is useful.
2.1.3. Method Accuracy. The quantitative accuracy of a

CompChem model stems from its suitability in describing the
system. As explained above, an observed accuracy will depend
on the representation being used. High-quality CompChem
calculations have traditionally been benchmarked against data
sets that consist of well-controlled and relatively precise
thermochemistry experiments on small, isolated molecules.32,33

The error bars for standard calorimetry experiments are
approximately 4 kJ/mol (or 1 kcal/mol or 0.04 eV), and
computational methods that can provide greater accuracy than
this are stated as achieving “chemical accuracy”. Note that this
term should be used when describing the accuracy of the
method compared to the most accurate data possible; for
example, if one CompChem method was found to reproduce
another CompChem method within 1 kJ/mol, but both
methods reproduce experimental data with errors of 20 kJ/
mol, then neither method should be called chemically accurate.
There are many well-established reasons why CompChem
models can bring errors. For example, errors may be due to
size consistency34 or size extensivity35 problems that are
intrinsic within the CompChem method, larger systems
sometimes embody significant medium and long-range
interactions (e.g., van der Waals forces)36 or self-interaction
errors37 that might not be noticeable in small test cases. The
recommended path forward is to consider which fundamental
interactions are in play in the system and then use a
CompChem model that is adequate at describing those
interactions. Besides this, users should make use of existing
tutorial references that provide practical knowledge about
which parameters in a CompChem calculation should be
carefully noted, for example ref 38. Historically the most
popular CompChem methods for molecular and materials
modeling (the B3LYP39 and PBE40 exchange correlation

functionals, see section 2.2.3.) are often said to have an
expected accuracy of about 10−15 kJ/mol (or 2−4 kcal/mol
or 0.1−0.2 eV) when modeling differences between the total
energies of two similar systems, and errors are expected to be
somewhat larger when considering transition state energies.
Though this is used as a simple rule, it is obviously an
oversimplification and actual accuracy is only assessed by
thoughtful benchmarking of the case being considered.41−45

2.1.4. Precision and Reproducibility. In CompChem,
one normally assumes that any two users using the same
representation for the system with the same code on the same
computing architecture will obtain the exact same result within
the numerical precision of the computers being used. This is
not always the case, especially for molecular dynamics (MD)
simulations that often rely on stochastic methods.46 Computa-
tional precision also becomes more concerning when there are
different versions of codes in circulation, errors that might arise
from different compilers and libraries, and a lack of consensus
in the community about which computational methods and
which default settings should be used for specific application
systems, for example, grid density selections,47 or standard
keywords for molecular dynamics simulations.46,48 There have
been efforts to confirm that different codes can reproduce
energies for the same system representation,48,49 but some
commercial codes hold proprietary licenses that restrict
publications that critically benchmark calculation accuracy
and timings across different codes. A path forward to benefit
the advancement of insight is the development of (open)
source codes50 that perform as well if not better than
commercial codes. While increased access to computational
algorithms is beneficial, it also raises the need for enforcing
high standards of quality and reproducibility.51,52 We are also
glad to see active developments to more lucidly show how any
set of computational data is generated, precisely with which
codes, keywords, and auxiliary scripts and routines.53−56 We
are now in an era where truly massive amounts of data and
information can be generated for CompChem+ML efforts. To
go forward, one needs to know what constitutes good and
useful data, and the next section provides an overview of how
to do this using CompChem.

2.2. Hierarchies of Methods

Earlier we mentioned that a usual task in CompChem is to
calculate the ground state energy of an atomic scale system.
Indeed, CompChem methods can determine the energy for a
hypothetical configuration of atoms, and this constitutes the
potential energy surface (PES) of the system (Figure 4). The
PES is a hypersurface spanning 3N dimensions, where N is the
number of atoms in the system. Since the PES is used to
analyze chemical bonding between atoms within the system,
the PES can also be simplified by ignoring translational and
rotational degrees of freedom for the entire system. This
reduces the dimensionality of the PES from 3N to 3N − 5 for
linear systems (e.g., diatomic molecules or perfectly linear
molecules such as acetylene) or 3N − 6 for all other nonlinear
systems. Furthermore, since visualization is difficult beyond
three dimensions, PES drawings will show a 1-D or 2-D
projection of this hypersurface where the z-axis is convention-
ally used to represent the scale for system energy.
Any arbitrary PES will contain several interesting features.

Minima on the PES correspond to mechanically stable
configurations of a molecule or material, for example reactant
and product states of a chemical reaction or different
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conformational isomers of a molecule. Because they are
minima, the second derivative of the energy given by the PES
with respect to any dimension will be positive. Minima can also
be connected by pathways, which indicate chemical trans-
formations (Figure 4, red line). Along such pathways, the
second derivative can be positive, zero, or negative, but all
other second derivatives must be positive. Transition states are
first-order saddlepoints and thus represent a maximum in one
coordinate and a minimum along all others. They correspond
to the lowest energy barriers connecting two minima on the
PES and are hence important for characterizing transitions
between PES minima (e.g., chemical reactions). Second-order
saddle points57 and bifurcating pathways58 can also exist, but
these are not discussed further here.
A wide range of higher-level properties of the system can be

predicted or derived using the PES, including predicted
thermodynamic binding constants, kinetic rate constants for
reactions, or properties based on dynamics of the system. The
task is then to choose an appropriate CompChem method that
can carry out energy and gradient calculations on the system’s
PES. Figure 5 shows several different hierarchies for
CompChem methods capable of doing this. Note that all of
these methods mentioned in this figure fall in the categories of
the bottom two regions in the multiscale hierarchy Figure 3.
All of these methods in principle could be used to develop

Figure 4. Potential energy surface (PES) of a fictional system with the
two coordinates R1 and R2. The minima of the PES correspond to
stable states of a system, such as equilibrium configurations and
reactants or products. Minima can be connected by paths (red line),
along which rearrangements and reactions can occur. The maximum
along such a path is called a transition state. Transition states are first-
order saddle points, a maximum in one coordinate and minima in all
others. They correspond to the minimum energy required to
transition between two PES minima and play a crucial role in the
description of chemical transformations.

Figure 5. (a) “Magic cube”59 depiction of hierarchies of correlated wavefunction approaches. (b) “Jacob’s Ladder”60 depiction of hierarchies of
Kohn−Sham density functional theory (DFT) approaches. (c) Hierarchies of atomistic potentials. (d) Overall hierarchies in predictive atomic scale
modeling methods.
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coarse-grained or continuum models as well. Also note that
methods in Figure 5 will bring very different computational
costs and opportunities for methods involving ML.
2.2.1. Wavefunction Theory Methods. In standard

computational quantum chemistry, a system’s energy can be
computed in terms of the Schrödinger equation.61−63 The
wavefunction that will be used to represent the positions of
electrons and nuclei in the system (Ψ(r, R)) is hard to intuit
since it can be complex valued. However, its square describes
the real probability density of the nuclear (R) and electronic
positions (r). In a real system, the position and interactions of
a single particle in the system with respect to all other particles
will be correlated, and this makes exactly solving the
Schrödinger equation impossible for almost all systems of
practical interest. To make the problem more tractable, one
may exploit the Born−Oppenheimer approximation;64 since
nuclei are expected to move much slower than the electrons
they can be approximated as stationary at any point along the
PES. This allows the energy to be calculated using the time-
independent Schrödinger equation and solving the eigenvalue
problem:

H T V E( )̂ Ψ = ̂ + ̂ Ψ = Ψ (1)

Here, the Hamiltonian operator (Ĥ) is the sum of the
kinetic (T̂) and potential (V̂) operators, Ψ is the wavefunction
(i.e., an eigenfunction) that represents particles in the system,
and E is the energy (i.e., an eigenvalue). In this way, nuclei can
be treated as fixed point charges, and then, eq 1 can be
transformed into the so-called electronic Schrödinger equation,
where the Hamiltonian Ĥel and wavefunction Ψel(r; R) now
only depend on the nuclear coordinates R in a parametric
fashion:
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r R r r R R r

r R
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Ψ

= Ψ (2)

The above expression has Ĥel composed of single electron (e)
and pairwise electron−nuclear (eN), nuclear−nuclear (NN),
and electron−electron (ee) terms. Here, we will now implicitly
assume the Born−Oppenheimer approximation throughout
and leave off the subscript indicating the electronic problem.
However, we note that the Born−Oppenheimer approximation
is not always sufficient and computationally intensive non-
adiabatic quantum dynamics may be required.65 In certain
cases, semiclassical treatments are appropriate; for example,
nonadiabatic effects between electrons and nuclei can be
considered using nuclear-electronic orbital methods.66

A second common approximation is to expand the total
electronic wavefunction in terms of one-electron wave-
functions (i.e., spin orbitals): ϕ(ri). Electrons are Fermions
and therefore exhibit antisymmetry, which in turn results in the
Pauli exclusion principle. Antisymmetry means that the
interchange of any two particles within the system should
bring an overall sign change to the wavefunction (i.e., from +
to −, or vice versa). This property is conveniently captured
mathematically by combining one electron spin orbitals into
the form of a Slater determinant:

μ

∂ ∏ ∂

μ
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n n n
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1 1 1
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ϕ ϕ

Ψ ··· =
!

(3)

Note that a determinant’s sign changes whenever two columns
or rows are interchanged, and in a Slater determinant this
corresponds to interchanging electrons and thus the physically
appropriate sign change for the overall wavefunction. Addi-
tionally,

n
1

!
is a normalizing factor to ensure the wavefunction

is unitary.
The spin orbitals can be treated as a mathematical expansion

using a basis set of μ functions χμ, each having coefficients cμi,
which are generally Gaussian basis functions,67−69 Slater-type
hydrogenic orbitals,70 or plane waves under periodic boundary
conditions:71−73

ci i∑ϕ χ=
μ

μ μ
(4)

The different types of mathematical functions bring different
strengths and weaknesses, but these will not be discussed
further here. A universal point is that larger basis sets will have
more basis functions and thus give a more flexible and physical
representation of electrons within the system. On one hand
this can be crucial for capturing subtle electronic structure
effects due to electron correlation. On the other hand, larger
basis sets also necessitate significantly higher computational
effort. A standard technique to avoid high computational effort
in electronic structure calculations is to replace nonreacting
core electrons with analytic functions using effective core
potentials (ECPs, i.e., pseudopotentials).74−89 This requires
reformulating the basis sets that describe the valence space of
the atoms, for example see refs 90 and 91. Larger nuclei that
bring higher atomic numbers and larger numbers of electrons
will also exhibit relativistic effects,92 and relativistic Hamil-
tonians are based on the Dirac equation93,94 or quantum
electrodynamics.95 These methods can range from reasonably
cost-effective methods96,97 to those bringing extremely high
computational cost.98 Practical applications have traditionally
used standard nonrelativistic Hamiltonian methods, along with
ECPs (or pseudopotentials) that have been explicitly
developed to account for compressed core orbitals that result
from relativistic effects.
Using the Born−Oppenheimer approximation (eq 2)

together with a Slater determinant wavefunction (eq 3)
expressed in a finite basis set (eq 4) brings about the simplest
wavefunction based method, the Hartree−Fock (HF)
approach (for historical context see refs 99−101). The HF
method is a mean field approach, where each electron is
treated as if it moves within the average field generated by all
other electrons. It is generally considered inaccurate when
describing many chemical systems, but it continues to serve as
a critical pillar for CompChem electronic structure calculations
since it either establishes the foundation for all other accurate
methods or provides energy contributions (i.e., exact
exchange) that is not provided in some CompChem methods.
CompChem methods that achieve accuracy higher than HF
theory are said to contain electron correlation, a critical
component for understanding molecules and materials (as
described in more detail in section 2.2.2.). Expressing Ψ as a
Slater determinant and rearranging eq 2 while temporarily
neglecting nuclear−nuclear interactions allows one to define
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the HF energy in terms of integrals of the electronic spin
orbitals:
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where the first two terms are referred to as one-electron
integrals and represent the kinetic energy of the electrons and
the potential energy contributions from electron-nuclei
interactions. The remaining terms are two-electron integrals
that describe the potential energy arising from electron−
electron interactions and are called Coulomb and exchange
integrals. Using Lagrange multipliers, one can express the HF
equation in a compact matrix form, the so-called Roothan−
Hall equations,102−104 which allow for an efficient solution:

FC SCϵ= (6)

Each matrix has a size of μ × μ, where μ is the number of basis
functions used to express the orbitals of the system. C is a
coefficient matrix collecting the basis coefficients cμi (see eq 4),
while S is the overlap matrix measuring the degree of overlap
between individual basis functions and ϵ is a diagonal matrix of
the spin orbital energies. Finally, F is the Fock matrix, with
elements of a similar form as in eq 5, but expressed in terms of
basis functions χμ. One important detail not readily apparent in
eq 6 is that the Fock matrix depends on the orbital coefficients
that must be provided before eq 6 can be solved. As such, eq 6
cannot be solved in closed form, but instead requires a so-
called self-consistent field approach. Starting from an arbitrary
set of trial (i.e., initial guess) functions, one iteratively solves
for optimal molecular orbital coefficients, which are then used
to construct a new Fock matrix, until a minimum energy is
reached in accordance with the variational principle of
quantum mechanics. Evaluating and transforming the two-
electron integrals in eq 5 are a significant bottleneck for these
calculations and thus the computational effort of the HF
methods formally scales as ( )4μ with the number of basis
functions. This means that a calculation on a system twice as
large will require at least 24 = 16 times as much computing
time. The electronic exchange interaction resulting from the
antisymmetry of the wavefunction imposes a strong constraint
on the mathematical form of ML models for electronic
wavefunctions. Construction of efficient and reliable antisym-
metric ML models for the many-body wavefunction is an
important area of current research.105,106

2.2.2. Correlated Wavefunction Methods. The system’s
correlation energy is defined as sum of electron−electron
interactions that originate beyond the mean-field approxima-
tion for electron−electron interactions that is provided by HF
theory. While correlation energy makes up a rather small

contribution to the overall energy of a system (usually about
1% of the total energy), because internal energies in molecular
and material systems are so enormous, this contribution
becomes rather significant. As an example, most molecular
crystals would be unstable as solids if calculated using the HF
level of theory. The missing component is attractive forces that
are obtained from levels of theory that account for correlation
energy. Correlation energies are obtained by calculating
additional electron−electron interaction energies that arise
from different arrangements of electron configurations (i.e.,
different possible excited states) that are not treated with the
mean field approach of HF theory.
The most complete correlation treatment is the full

configuration interaction (FCI) method, which is the exact
numerical solution of the electronic Schrödinger equation (in
the complete basis limit) that considers interactions arising
from all possible excited configurations of electrons. The FCI
wavefunction takes the form of a linear combination of all
possible excited Slater determinants which can be generated
from a single HF reference wavefunction by electron
excitations:

a a a ...FCI 0 HF
, , , ,

∑ ∑Ψ = Ψ + Ψ + Ψ +
α β

β
α

β
α

α β γ δ
βδ
αγ

βδ
αγ

(7)

where Ψβ
α represents the Slater determinant obtained by

exciting an electron from orbital α into an unoccupied orbital
β, and the as are expansion coefficients determining the weight
of the different contributing configurations. Expectedly, FCI
calculations scale extremely poorly with the number of
electrons in the system ( n( )! ), as the number of possible
configurations grows rapidly, making them feasible only for
small molecules. For an example of the state of the art, FCI
calculations have been used to benchmark highly accurate
methods on calculations on a benzene molecule.107

Most correlated wavefunction methods use a subset of the
possible configurations in eq 7 to be computationally tractable.
The configuration interaction (CI)108 method for example
only includes determinants up to a certain permutation level
(e.g., single and double excitations in CISD). Alternatively,
MPn35 (e.g., MP2) recovers the correlation energy by applying
different orders of perturbation theory. Coupled cluster theory,
another widely used post-HF method, includes additional
electron configurations via cluster operators.109 One coupled
cluster method that involves single, double, and perturbative
triples excitations, CCSD(T), is referred to as the “gold-
standard” approach for CompChem electronic structure
methods since it brings high accuracy for molecular energies.
However, there are many newer advances that improve upon
CCSD(T).107,110 Note that just because a method has a
reputation for being accurate does not mean that it will be for
all systems. For example, consider again the benzene molecule,
which is best illustrated having dotted resonance bond
depicting a planar molecule with equal C−C bond lengths.
Such a geometry will not be found to be stable with many
different CompChem methods, in part because of subtle
chemical bonding interactions or errors that arise from specific
choices of basis sets used with different levels of theory.111,112

A key point to reiterate is that correlated wavefunction
methods are founded on the HF theory, and so they are even
more computationally demanding than HF calculations, for
example, n( )5 for MP2, n( )6 for CCSD and CISD and

n( )7 for CCSD(T). However, this computational expense is
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alleviated by continually improving computing resources (e.g.,
the usability of graphics processing units (GPUs))113−116 and
the development of efficiency enhancing algorithms, such as
pseudospectral methods,117−119 resolution of the identity
(RI),120 domain-based local pair natural orbital methods
(DLPNO),121 and explicitly correlated R12/F12 methods.122

There are also ongoing efforts to develop other CompChem
methods based on quantum Monte Carlo123 and density
matrix renormalization group theory (DMRG)124 to provide
high accuracy with competitive scaling with other computa-
tional methods. Efforts are beginning to become implemented
that use ML to accelerate these types of calcula-
tions.105,106,125−129

Schemes have also been developed to exploit systematic
errors between different levels of theory with different basis
sets so that approximations can be extrapolated toward an
exact result. Examples include the complete basis set (CBS),130

Gaussian Gn,131 Weizmann (W-)n132 methods, and high
accuracy extrapolated ab initio thermochemistry (HEAT)133

methods. For a recent review on these and other methods, see
ref 134. These schemes are also becoming a target of recent
work using ML methods.135

HF determinants provide good baseline approximations of
the ground state electronic structure of many molecules, but
they may describe poorly more complicated bonding that
arises during bond dissociation events, excited states, and
conical intersections.136−139 Some many-body wavefunctions
are best described as a superposition of two or more
configurations, for example, when other configurations in eq
7 can have similar or higher expansion coefficients a than the
HF determinant. For this reason, high quality single reference
methods like CCSD(T) fail because the theory assumes that
salient electronic effects are captured by the initial single HF
configuration. (In fact, methods such as CCSD(T) have been
implemented with diagnostic approaches available that let
users know when there may be cause for concern).140−142 In
these cases, it may no longer be trivial to find reliable black-box
or automated procedures (e.g., in situations involving
resonance states, chemical reactions, molecular excited states,
transition metal complexes, and metallic materials, etc.).136 So-
called multiconfiguration approaches,136 such as the general-
ized valence bond (GVB) method143 or the complete active
space self-consistent field (CASSCF),144 the multireference CI
(MRCI) methods,145 complete active space perturbation
theory (CASPT2),146 or multireference coupled cluster
(MRCC),147,148 can more physically model these systems
since they employ several suitable reference configurations
with different degrees of correlation treatments. These
methods are not black-box and should be expected to require
an experienced practitioner with CPI to choose the reference
states that can substantially influence the quality of results.149

This is an area though where ML can bring progress in
automating the selections of physically justified active
spaces.129

In closing, there are a large number of available correlated
wavefunction methods but many are even more costly than HF
theory by virtue of requiring an HF reference energy
expression shown in eq 5. Figure 5a depicts a so-called
“magic cube” (that is an extension beyond a traditional “Pople
diagram”135,150) that concisely shows a full hierarchy of
computational approaches across different Hamiltonians,
basis sets, and correlation treatment methods. This makes it
easy to identify different wavefunction methods that should be

more accurate and more likely to provide useful atomic scale
insights (as well as those that would be more computationally
intensive). Another important aspect highlighted in the “magic
cube” is that higher level wavefunction methods require larger
basis sets to successfully model electron correlation effects. A
CCSD(T) computation carried out with a small basis set for
example might only offer the same accuracy as MP2 while
being two orders of magnitude more expensive to evaluate.108

As was mentioned earlier with the benzene system, spurious
errors with different basis sets might still be found that indicate
problems with specific combinations of levels of theory and
basis sets. The deep complexity of correlated wavefunction
methods makes this a promising area for continued efforts in
CompChem+ML research.

2.2.3. Density Functional Theory. Density-functional
theory (DFT)151 is another method to calculate the quantum
mechanical internal energy of a system using an energy
expression that relies on functionals (i.e., a function of a
function) of electronic density ρ = |Ψel(r; R)|

2:

E T Vρ ρ ρ[ ] = [ ] + [ ] (8)

Compared to wavefunction theory, DFT should be far more
efficient since the dimensionality of a density representation
for electrons will always be three rather than the 3n dimensions
for any n-electron system described by a many-body
wavefunction method. DFT has an important drawback that
the exact expression for the energy functional is currently
unknown, all approximations bring some degree of uncontrol-
lable error, and this has precipitated disagreeable opinions
from purists in chemical physics, especially those who are
developing correlated wavefunction methods. However, there
is also substantial evidence that DFT approximations are
reasonably reliable and accurate for many practical applications
that bring information, knowledge, and sometimes insight. We
now provide a bird’s-eye view of DFT-based methods.
One thrust of DFT developments since its inception has

focused on designing accurate expressions strictly in terms of a
density representation, and these approaches are referred to as
“kinetic energy (KE-)” or “orbital-free (OF-)” DFT.152 Some
energy contributions (e.g., nuclear-electron energy and classical
electron−electron energy terms) can be expressed exactly, but
other terms, such as the kinetic energy as a function of the
density are not known and must be approximated. OF-DFT is
very computationally efficient (these methods should scale
linearly with system size153,154) but these formulations have
not yet been developed to rival the accuracy or transferability
of wavefunction methods, though they have been used for
studying different classes of chemical and materials sys-
tems.155−157 OF-DFT methods are also used in exciting
applications modeling chemistry and materials under extreme
conditions.158−160 One should expect that once highly accurate
forms are developed and matured, accurate CompChem
calculations on electronic structures on systems having more
than a million atoms might become commonplace. Indeed,
there are efforts to use ML to develop more physical OFDFT
methods.161,162

The most commonly used form of DFT (which is also one
of the most widely used CompChem methods in use today) is
called Kohn−Sham (KS-)DFT.163 In KS-DFT, one assumes a
fictitious system of noninteracting electrons with the same
ground state density as the real system of interest. This makes
it possible to split the energy functional in eq 8 into a new
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form that involves an exact expression of the kinetic energy for
noninteracting electrons:

E T V V T Vni eN ee ee eeρ ρ ρ ρ ρ ρ[ ] = [ ] + [ ] + [ ] + Δ [ ] + Δ [ ]
(9)

Here, Tni[ρ] is the kinetic energy of the noninteracting
electrons, VeN[ρ] is the exact nuclear-electron potential, and
Vee[ρ] is the Coulombic (classical) energy of the non-
interacting electrons. The last two terms are corrections due
to the interacting nature of electrons and nonclassical
electron−electron repulsion. KS-DFT also expands the three-
dimensional electron density into a spin orbital-basis ϕ similar
to HF theory to define the one-electron kinetic energy in a
straightforward manner. This allows the Tni, VeN, and Vee
expressions to be evaluated exactly and one arrives at the KS
energy:
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The last two correction terms in eq 9 arise from electron
interactions, and these are combined into the so-called
“exchange-correlation” term (Exc), which uniquely defines
which scheme of KS-DFT is being used. In theory, an exact Exc
term would capture all differences between the exact FCI
energy and the system of noninteracting electrons for a ground
state.
The KS-DFT equations can be cast in a similar form as the

Roothan−Hall equations (eq 6), which allows for a computa-
tionally efficient solution. Moreover, the elements of the KS
matrix (which replaces the Fock matrix F) are easier to
evaluate due to the fact that several of the computationally
intensive integrals are now accounted for via Exc. Hence, the
formal scaling for KS-DFT is n( )3 with respect to the number
of electrons. Even though this is much poorer scaling than
ideally linear scaling OF-DFT, the exact treatment of
noninteracting electrons makes KS-DFT more accurate.
Furthermore, there are several modern exchange-correlation
functionals that routinely achieve much higher accuracy than
HF theory with less computational cost, and thus KS-DFT is a
competitive alternative with many correlated wavefunction
methods in many modern applications.
A remaining problem is constructing a practical expression

for the exchange-correlation functional, as its exact functional
form remains unknown. This has spawned a wealth of
approximations that have been founded with different degrees
of first principles and/or empirical schemes. Classes of KS-
DFT functionals are defined by whether the exchange-
correlation functional is based on just the homogeneous
electron gas (i.e., the “local density approximation”, LDA), that
and its derivative (i.e., the “generalized gradient approxima-
tion”, GGA), as well as other additional terms that should

result in physically improved descriptions or error cancella-
tions. The resulting hierarchy of KS-DFT functionals is often
referred to as a “Jacob’s Ladder” of DFT (Figure 5b).
Generally, the higher up the ladder one goes, the more
accurate but more computationally demanding the calcu-
lation.164 However, the intrinsic inexactness in DFT makes it
difficult to assess which functionals are physically better than
others.165,166 Nevertheless, the Jacob’s Ladder hierarchy is
useful for clearly designating how and why newer methods
should perform in specific applications (for perspective see refs
167−169).
Indeed, by being based on a ground-state representation for

homogeneous electron gas, DFT calculations can sometimes
bring more easily physical insight into some systems that are
very challenging for wavefunction theory to examine (e.g.,
metals, where HF theory provides divergent exchange energy
behaviors170,171). On the other hand, DFT is also generally not
well-suited for studying physical phenomena involving
localized orbitals or band structures such as those found in
semiconducting materials with small band gaps, molecular or
material excited charge transfer states, or interaction forces that
can arise due to excited states, e.g. dispersion (or London)
forces. The former features can normally be treated using
Hubbard-corrected DFT+U models that require a system-
specific U−J parameter172,173 or more generalizable but much
more computationally expensive hybrid DFT approaches.
Dispersion forces (i.e., van der Waals interactions) are
nonexistent in semilocal DFT approximations, and it is now
commonplace to introduce them into DFT calculations using a
variety of different methods.36

There is also growing interest in using embedded
CompChem calculation schemes that can partition systems
into discrete regions that could be treated with highly accurate
correlated wavefunction theory and computationally efficient
KS-DFT schemes separately.174−178 DFT has also been
extended to the modeling of excited states in the form of
time-dependent (TD-)DFT.179 Similar to ground state DFT,
TDDFT is a less computationally expensive alternative to
excited state wavefunction-based methods. The approach
yields reasonable results where excitations induce only small
changes in the ground state density, e.g. low lying excited
states.179,180 However, due to its single reference nature,
TDDFT tends to break down in situations where more than
one electronic configuration contribute significantly to the
excited state. Just as with correlated wavefunction methods,
there are already signs of CompChem+ML efforts to improve
the applicability of DFT-based methods.181−185

2.2.4. Semiempirical Methods. Correlated wavefunctions
and, to a lesser degree, KS-DFT are still very computationally
demanding and only of limited use for large scale simulations.
Further approximations based on wavefunctions and DFT
methods have been developed to simplify and accelerate
energy calculations. These so-called semiempirical methods
still explicitly consider the electronic structure of a molecule
but in a more approximate way than methods described above.
Semiempirical approaches based on wavefunction theory

include methods like extended Hückel theory and neglect of
diatomic differential overlap (NDDO).186 Both approaches are
simplifications of the HF eqs (eq 5) by introducing
approximations to the different integrals. In the NDDO
approach,187 only the two-electron integrals in eq 5 are
considered, where the two orbitals on the right and left-hand
side of the

r r
1

i j| − |
operator are located on the same atom. The
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remaining two-center (and one-center) integrals are then
approximated by introducing a set of empirical functions, one
for each unique type of integral. Moreover, the overlap matrix
in eq 6 is assumed to be diagonal, which greatly simplifies the
energy evaluation. This reduces the required computational
effort tremendously and allows the scaling of these approaches
to be reduced to N( )2 . NDDO serves as a basis for more
sophisticated semiempirical schemes, such as AM1,188 PM7,189

and MNDO,190 where the energy is usually determined self-
consistently using a minimally sized basis set. Inadequacies in
theory can be compensated by different empirical para-
metrization schemes that can allow these calculations to rival
the accuracy of higher level theory for some systems. For
example Dral et al.191 provided a recent “big-data” analysis of
the performance of several semiempirical methods with large
data sets.
Semiempirical schemes are also carried over to approximate

KS-DFT with so-called density functional tight binding
(DFTB).192 DFTB simplifies the KS eqs (eq 10) by
decomposing the total electron density ρ into a density of
free and neutral atoms ρ0 and a small perturbation term δρ0 (ρ
= ρ0 + δρ0). Expanding eq 10 in the perturbation δρ0 makes it
possible to partition the total energy into three terms
amendable to different approximation schemes:

E E E E0 rep Coul 0 BS 0δρ δρ δρ[ ] = + [ ] + [ ] (11)

Erep is a repulsive potential containing interactions between the
nuclei and contributions from the exchange correlation
functional (these are typically approximated via pairwise
potentials). The charge fluctuation term ECoul is modeled as
a Coulomb potential of Gaussian charge distributions
computed from the approximate density. Finally, EBS refers
to the “band structure” term, which considers the electronic
structure and contains contributions from Tni, VeN, and the
exchange correlation functional (see eq 10). To compute EBS,
the density is expressed in a minimal basis of atomic orbitals,
similar as in NDDO. The necessary Hamiltonian and overlap
integrals are then evaluated via an approximate scheme based
on Slater−Koster transformations. In addition to the energy,
atomic partial charges are also computed in this step, which are
then used in ECoul. As a consequence, DFTB equations can also
be solved self-consistently. DFTB methods are parametrized by
finding suitable forms for the repulsive potential and adjusting
the parameters used in the Slater−Koster integrals. Non-self-
consistent and self-consistent tight-binding DFT meth-

ods193,194 have been developed for simulating large scale
systems. Semiempirical methods have also been a target of
different ML schemes, yielding improved parametrization
schemes and more accurate functional approximations.195−198

2.2.5. Nuclear Quantum Effects. The quantum nature of
lighter elements, such as H−Li, and even heavier elements that
form strong chemical bonds (C−C bond in graphene for
example199) gives rise to significant nuclear quantum effects
(NQEs). Such effects are responsible for large differences from
the Dulong−Petit limit of the heat capacity of solids, isotope
effects, and the deviations of the particle momentum
distribution from the Maxwell−Boltzmann equation.200 To
capture NQEs, path-integral molecular dynamics
(PIMD)201,202 or centroid molecular dynamics (CMD)203,204

can be used, but these methods are associated with much
higher computational costs (usually about 30 times higher)
compared with classical MD simulations using point nuclei.
Moreover, because systems may be influenced by competing
NQEs, the extent of NQEs is sensitive to the potential energy
surface assumed. (Semi)local DFT approaches may not even
qualitatively predict isotope fractionation ratios, and usually
hybrid DFT is needed to reach quantitative accuracy.205

However, employing hybrid DFT calculations or other high
level methods in PIMD/CMD simulations can accrue
extremely high computational costs. For this reason, ML
force fields have been proposed as efficient means to carry out
PIMD simulations, enabling essentially exact quantum-
mechanical treatment of both electronic and nuclear degrees
of freedom, at least for small molecules with dozens of
atoms.206,207

2.2.6. Interatomic Potentials. Interatomic potentials
introduce an additional level of abstraction compared to
methods described above. Instead of using exact quantum
mechanical expressions to create the PES for the system,
analytic functions are used to model a presupposed PES that
contains explicit interactions between atoms, while electrons
are treated in an implicit manner (sometimes using partial
charge schemes).251−256 Interatomic potentials thus are
(oftentimes dramatically) more computationally efficient than
correlated wavefunction, DFT, and semiempirical approaches.
This efficiency makes it possible to study even larger systems of
atoms (e.g., biomolecules, surfaces, and materials) than is
possible with other computational methods. Note that different
empirical potentials bring substantially different computational
efficiencies; for example Lennard-Jones (LJ) potentials are

Table 2. Types of Interatomic Potentials and Their Areas of Application

potential reactive typical applications examples

pairwise-distance-
based

sometimes materials, liquids Lennard-Jones,208,209 Morse,210, Buckingham211

distance and angle-
based

usually no materials, liquids many water potentials (e.g., SPC, TIP4P, mW),212 Stillinger−Weber213

class I (nonpolariz-
able) force fields

no proteins, lipids, polymers, nucleic acids,
carbohydrates, organic molecules,
liquids

AMBER,214,215 GAFF,216 CHARMM,217 GROMOS,218−220 OPLS,221,222 DREIDING,223

MMFF94,224 UFF,225 COMPASS,226 INTERFACE,227 interatomic potentials for ionic
systems228

class II (polarizable) no proteins, lipids, polymers, nucleic acids,
carbohydrates, organic molecules,
liquids

AMOEBA,229 classical Drude oscillator models,230 fluctuating charge (FQ) models,231 MB-
Pol,232 distributed point polarizable models (DPP2),233 and many more234

embedded atom
method (EAM)-like

yes reactions within solid materials EAM,235 MEAM,236 Finnis−Sinclair,237 Sutton−Chen238

bond-order potentials
(BOPs)

yes reactions within solids, liquids, gases Brenner,239 Tersoff,240,241 REBO,239,242 COMB,243,244 ReaxFF,245,246 APT247

other quantum me-
chanics-derived
force fields

yes reactions within liquids and gases EVB248 and related models249,250
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more efficient than classical forcefields (FFs) like AMBER and
CHARMM, while those are more efficient than most bond-
order potentials, such as ReaxFF.245,246 The degree of
efficiency arises from the balance of using accurate or
physically justified functional forms, approximations, and
model parametrizations. There are many different formulations
(see Figure 5c), and we will discuss the most general classes.
An overview of the different types of potentials and their
features is provided in Table 2. For extensive discussions on
these methods including semiempirical approaches, we refer to
the extensive review by Akimov and Prezhdo (ref 257). An
excellent review for interatomic potentials is provided by
Harrison et al. (ref 258), and an excellent overview of modern
methods can be found in a special issue of J. Chem. Phys.259

The distinctions between different types of FFs can be blurry
sometimes, and we will differentiate categories in ascending
complexity. One of the simplest interatomic potentials is the LJ
potential:260
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It models the total energy as the sum of all pairwise interaction
between atoms i and j using an attractive and repulsive term
depending on the interatomic distance rij. εij modulates the
strength of the interaction function, while σij defines where it
reaches its minimum. The LJ potential is a prototypical “good
model” of interatomic potentials, as it has a sufficiently simple
physical form with only two parameters while still yielding
useful results.
For covalent systems, such as bulk carbon or silicon, just

pairwise distances are not sufficient to capture the local
coordination of the atoms, and many empirical poten-
tials212,213,261 for these systems were expressed as a function
of the pairwise distances and three-body terms within a certain
cutoff distance. The pairwise term can take the form of LJ-type,
electrostatic, or harmonic potentials, and the three-body term
is usually a function of the angles formed by sets of three
atoms.
So-called class I classical FFs introduce a more complicated

energy expression:
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The first three terms are the energy contributions of the
distances (rij), angles (θijk) and dihedral angles (ϕijkl) between
bonded atoms. Because of this, they are also referred to as
bonded contributions. Bond and angle energies are modeled
via harmonic potentials, with the kij and kijk parameters
modulating the potential strength and ri̅j and θ̅ijk are the
equilibrium distances and angles. The dihedral term is
modeled with a Fourier series to capture the periodicity of
dihedral angles, with kijkl and ϕijkl as free parameters. The last
two terms account for nonbonded interactions. The long-range
electrostatics are modeled as the Coulomb energy between
charges qi and qj, and the van der Waals energy is treated via a
LJ potential (eq 12). In Class I/II FFs, empirical parameters
are tabulated for a variety of elements in wide ranges of

chemical environments (for example ref 262). Parameters for
any one system should not necessarily be assumed to transfer
well to other systems, and reparametrizations may be needed
depending on the application. Different sets of parametrization
schemes give rise to different types of classical FFs, with
CHARMM,217 Amber,214,215 GROMOS,218−220 and
OPLS221,222 being a few of many examples.
An extension beyond these FFs are class II (i.e., “polar-

izable”) FFs, where the static charges are replaced by
environment dependent functions (e.g., AMOEBA263). A
significant advantage to the class I and II types of FFs is that
they are computationally efficient, which makes them well
suited for MD simulations of complex and extended (bio)-
molecules, such as proteins, lipids, or polymers. Implementa-
tions of FF calculations on GPUs makes these simulations
extremely productive.264−268 A disadvantage of Class I and II
types of interatomic potentials is that they rely on predefined
bonding patterns to compute the total energy, and this limits
their transferability. In general, bonds between atoms are
defined at the beginning of the simulation run and cannot
change. Furthermore, bonding terms make use of harmonic
potentials that are not suitable for modeling bond dissociation.
Reactive potentials, which eschew harmonic potential

dependencies and thus can describe the formation and
breaking of chemical bonds, include the embedded atom
method (EAM, Figure 5c), which is used widely in materials
science.235 EAM is a type of many-body potential primarily
used for metals, where each atom is embedded in the
environment of all others. The total energy is given by
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Fi is an embedding function and ρ̃i an approximation to the
local electron density based on the environment of atom i.
Fi(ρ̃i) can be seen as a contribution due to nonlocalized
electrons in a metal. Vij is a term describing to the core−core
repulsion between atoms. An EAM potential is determined by
the functional forms used for Fi and Vij, as well as how the
density is expressed. Its dependence on the local environment
without the need for predefined bonds make EAM well suited
for modeling material properties of metals. An extension of
EAM is modified EAM (MEAM),236 which includes direc-
tional dependence in the description of the local density ρ̃i, but
this brings greater computational cost. EAMs also form the
conceptual basis of the embedded atom neural network
(EANN) machine learning potentials (MLPs).269

Another common type of reactive potentials are bond-order
potentials (BOPs). In general, BOPs model the total energy of
a system as interactions between the neighboring atoms:

E V r b V r f r( ) ( ) ( )
i j i

ij ij k ij ijtot
,

rep ( ) att cut∑= [ − ]
> (15)

Vrep and Vatt are repulsive and attractive potentials depending
on the interatomic distance rij. A cutoff function fcut restricts all
interactions to the local atomic environment. bij(k) is the bond
order term, from which the potential takes its name. This term
measures the bond order between atoms i and j (i.e., “1” for a
single bond, “2” for a double bond, and “0.6” for a partially
dissociated bond). Bond orders can also depend on
neighboring atoms k in some implementations. BOPs are
typically used for covalently bound systems, such as bulk solids
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and liquids containing hydrogen, carbon or silicon (e.g., carbon
nanotubes and graphene). Depending on the exact form of the
expressions in eq 15, different types of BOPs are obtained,
such as Tersoff240,241 and REBO239,242 potentials. BOPs can
also be extended to incorporate dynamically assigned charges,
yielding potentials like COMB243,270 or ReaxFF.245,246 As with
EAMs, BOPs have also been used as a starting point for
constructing more elaborate MLPs271−273 that will also be
discussed in more detail in section 3.
While efficient and versatile, all interatomic potentials

described above are inherently constrained by their functional
forms. A different approach is pursued by MLPs, such as
Behler−Parinello Neural Networks,274 q-SNAP,275 and GAP
potentials276 (Figure 5c). In MLPs, suitable functional
expressions for interactions and energy are determined in a
fully data-driven manner and ultimately only limited by the
amount and quality of available reference data. One can then
use substantially more data to generate a much more accurate
MLP than would be possible when using, for instance, a
ReaxFF potential trained on similar data sets.277

For the sake of completeness, we note that all approaches
described here are fully atomistic−each atom is modeled as an
individual entity. It is also possible to combine groups of atoms
into pseudoparticles giving rise to so-called coarse grained
methods. On an even higher level of abstraction, whole
environments can be modeled as a single continuum. As such
approaches are not subject of the present review, we refer the
interested reader, for example, to refs 278 and 279.
2.3. Response Properties

Once an energy calculation is completed by one of the
CompChem methods above, many other interesting molecular
properties can be calculated. Most of these properties can be
obtained as the response of the energy to a perturbation, for
example, changes in nuclear coordinates R, external electric (ϵ)
or magnetic (B) fields or the nuclear magnetic moments {Ii}.
Given an expression for the energy, which depends on the
above quantities, so-called response properties can be
computed via the corresponding partial derivatives of the
energy. A general response property Π then takes the form

n n n n
E R B I

R B I
( , , , )

( , , , )n n n n
i

n n n
i
nR B Ii

i

i

R B I

R B I
Π =

∂ ϵ
∂ ∂ϵ ∂ ∂ϵ

+ + +ϵ

ϵ (16)

where the ns indicate the n-th order partial derivative with
respect to the quantity in the subscript.102

A common response property is nuclear forces F = −Π (1,
0, 0, 0) that are the negative first derivatives of the energy with
respect to the nuclear positions. Such calculations allow a
plethora of different geometry optimization schemes for
chemical structures on the PES. Hessian calculations
corresponding to the second derivative of energy with respect
to nuclear positions are necessary to confirm the location of
first-order saddle points on the PES and identify normal modes
and their frequencies for vibrational partition functions that are
useful for modeling temperature dependencies based on
statistical thermodynamics. Hessian calculations are computa-
tionally costly, since they normally involve calculations based
on finite differences methods involving many nuclear force
calculations. Many methods have been developed to allow
CompChem algorithms to sample minimum energy regions of
the PES280−284 or precisely locate points of interest.285,286

Historically, many of these techniques have relied on
approximate or full Hessian calculations,287 but other

approaches, such as the nudged-elastic band288,289 and
string290−292 methods, are popular alternatives that do not
require a Hessian calculation. There have also been efforts
using different forms of ML to accelerate procedures or
overcome long-standing challenges in efficient sampling of and
optimization on the PES.293−298

The general expression above can provide a wealth of other
quantities, some of which are relevant for molecular spectros-
copy or provide a direct connection to experiment (see Table
3). Infrared spectra can be simulated based on dipole moments

μ = −Π (0, 1, 0, 0), while molecular polariziabilities α = −Π
(0, 2, 0, 0) offer access to polarized and depolarized Raman
spectra. Nuclear magnetic shielding tensors σ = Π (0,0,1,1) are
a central response property of a magnetic field. These allow the
computation of chemical shifts recorded in nuclear magnetic
resonance (NMR) spectroscopy via their trace Tri i

1
3

σσ = [ ].
The beauty of this formalism lies in the fact that a single energy
calculation method provides access to a wide range of quantum
chemical properties in a highly systematic manner. A large
number of modern MLPs use the response of the potential
energy with respect to nuclear positions to obtain energy
conserving forces. However, far fewer applications model
perturbations with respect to electric and magnetic fields. Ref
299 extends the descriptor used in the Faber−Christensen−
Huang−Lilienfeld (FCHL) Kernel by adding an explicit field
dependent term that makes it possible to predict dipole
moments across chemical compound space. Ref 300 introduces
a general neural network (NN) framework to model
interactions of a system with vector fields, which was then
used to predict dipole moments, polarizabilities and nuclear
magnetic shielding tensors as response properties.
2.4. Solvation Models

An important aspect of CompChem is molecular descriptions
from within a solution environment. Simulating a dynamical
environment composed of many surrounding molecules is
usually not feasible with electronic-structure methods. To
circumvent this problem, solvation modeling schemes have
been devised (see refs 301−306 for discussions on this topic).
The most popular approaches are so-called polarizable

continuum solvent models (PCM).279 They model the
electrostatic interaction of a solute molecule with its
environment by representing the charge distribution of the
solvent molecules as a continuous electric field, the reaction
field. This dielectric continuum can be interpreted as a
thermally averaged representation of the environment and is
typically assigned a constant permittivity depending on the
particular solvent to be modeled (ε = 80.4 for water). The
solute is placed inside a cavity embedded in this continuum.

Table 3. Response Properties of the Potential Energy

nR nϵ nB nI property

0 0 0 0 energy
1 0 0 0 forces
2 0 0 0 Hessian (harmonic frequencies)
0 1 0 0 dipole moment (IR)
1 1 0 0 infrared absorption intensities (IR)
0 2 0 0 polarizability (Raman)
0 0 1 1 nuclear magnetic shielding (NMR)
0 0 0 2 nuclear spin−spin coupling (NMR)
0 1 1 0 optical rotation (circular dichroism)
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The charge distribution of the molecule then polarizes the
continuous medium, which in turn acts back on the molecule.
To compute the electrostatic interactions arising from this
mutual polarization with electronic structure theory, a self-
consistent scheme is employed. After constructing a suitable
molecular cavity, a Poisson problem of the following form is
solved:

Vr r r( ) ( ) 4 ( )mπρ−∇[ϵ ∇ ] = (17)

Here, ρm(r) is the charge distribution of the solute and ϵ(r) is
the position dependent permittivity, which usually is set to one
within the cavity and the ε of the solvent on the outside. V(r)
is the electrostatic potential composed of the two terms

V V Vr r r( ) ( ) ( )m s= + (18)

where Vm(r) is the solute potential and Vs(r) is the apparent
potential due to the surface charge distribution σ(s)

V r
s

r s
s( )

( )
ds ∫ σ=

| − |Γ (19)

Γ indicates the surface of the cavity. Eq 17 is solved
numerically to obtain the surface charge distribution σ(s).
Once σ(s) has been determined in this fashion, the potential is
computed according to eq 19 and used to construct an
effective Hamiltonian of the form

H H V r( )eff s
̂ = ̂ + (20)

where Ĥ is the vacuum Hamiltonian. These equations are then
solved self-consistently in a Roothan−Hall or KS approach,
yielding the electrostatic solvent−solute interaction energy.
This scheme is also called the self-consistent reaction field
approach (SCRF).
Continuum models differ in how the cavities are constructed

and how eq 17 is solved to obtain the surface charge
distribution. Variants include the original PCM model, also
referred to as dielectric PCM (D-PCM),307 the integral
equation formulation of PCM (IEFPCM),308 SMD,309

conductor PCM (C-PCM),310 or the conductor-like screening
model (COSMO).311 The latter two approaches replace the
dielectric medium by a perfect conductor to allow for a
particularly efficient computation of σ(s). PCMs can be further
extended with statistical thermodynamics treatments to
account for solutes having different size and concentration
effects, and this leads to models such as COSMO-RS.312

A drawback of most PCM-like approaches is that they
neglect local solvent structures. Thus, they cannot reliably
account for situations where explicit solvent interactions are
important, for example, when for stabilizing specific sites for a
transition state through hydrogen bonding.301 Furthermore,
while implicit models might be parametrized to fit bulk-like
properties of mixed or ionic solvents (e.g., ref 313.), the
complex local solvent environment presented by these systems
are treatable by other means. For mixed solvent systems a
range of hybrid schemes such as COSMO-RS,305 reference
interaction site models (RISMs)314,315 or QM/MM316−318

approaches have been developed. As an in-depth discussion of
these alternative schemes exceeds the scope of this Review, we
instead refer to other references.319,320

ML models are becoming used to describe solvent effects.
Ref 300 introduces a continuum ML model based on a
reaction field that can predict energies and response properties
for continuum solvents, it can extrapolate to solvents not seen

during training, and it can be extended to operate in a QM/
MM fashion to account for explicit solvents effects in a Claisen
rearrangement reaction. Ref 321 implemented automatable
calculation schemes and unsupervised ML to allow predictions
of single ion solvation energies for monovalent and divalent
cations and anions based on physically rigorous quasi-chemical
theory.322,323 Ref 324 used convolutional NNs and MD
simulations to carry out high-throughput screening of mixed
solvent systems. Ref 325 implemented efficient ways to carry
out ML-based QM/MM MD simulations.

2.5. Insightful Predictions for Molecular and Material
Properties

By solving for electronic structures, by whatever means is
appropriate, one obtains molecular energies and energy
spectrum (typically corresponding to quasiparticles given by
KS or HF orbitals). From these, one can then compute
molecular or material properties that arise from quantum
mechanical and statistical operators, for example, thermody-
namic energies, response properties, highest and lowest
occupied molecular orbital energies, and band gaps, among
other properties. Many properties are defined by the characters
of the orbitals, and having knowledge of these should always be
helpful and aid in deriving useful insight into designing
molecules and materials for a particular function. Furthermore,
one is often interested in how these molecules behave over
time (i.e., the dynamics given some statistical ensemble that
depends on temperature, pressure, etc) over all possible
degrees of freedom. By understanding how energies and forces
change over time, one can predict thermal and pressure
dependencies as well as spectroscopic properties for advanced
knowledge that builds toward insightful predictions.
Molecular and materials chemistry is vastly complex and

variable, and one often faces a question of whether to span
wider chemical spaces versus take deeper explorations of a
specific phenomenon. A key problem is that even after the
effort of either approach, it is also not as clear how information
for one system might be related to another to provide more
knowledge. For instance, one may decide to calculate all
possible properties of ethanol with a CompChem method, but
understanding how any calculated property would be
correlated to an analogous property of isopropanol is still
usually difficult to do. There is great interest in understanding
chemical and materials space through applications of
quantitative structure activity/property relationships,326,327

cheminformatics,328 conceptual DFT,329 and alchemical
perturbation DFT.330 All these applications benefit from
greater access to CompChem data, and all have promise as
being interfaced with ML for transformative applications to
catalyze wisdom and impact.

3. MACHINE LEARNING TUTORIAL AND
INTERSECTIONS WITH CHEMISTRY

ML has had a dramatic impact on many aspects of our daily
lives and has arguably become one of the most far-reaching
technologies of our era. It is hard to overstate its importance in
solving long-standing computer science challenges, such as
image classification331−334 or natural language process-
ing,335−339 tasks that require knowledge that is hard to capture
in a traditional computer program.340−342 Previous classical
artificial intelligence (AI) approaches relied on very large sets
of rules and heuristics, but these were unable to cover the full
scope of these complex problems. Over the past decade,
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advances in ML algorithms and computer technology made it
possible to learn underlying regularities and relevant patterns
from massive data sets that enable automatic constructions of
powerful models that can sometimes even outperform humans
at those tasks.
This development inspired researchers to approach

challenges in science with the same tools, driven by the hope
that ML would revolutionize their respective fields in a similar
way. Here, we give an overview of these developments in
chemistry and physics to serve as an orientation for newcomers
to ML. We will first explain what tasks ML is good at and when
it might not be the best solution to a problem. We will start by
introducing the field of ML in general terms and dissect its
strengths and weaknesses.

3.1. What is ML?

In the most general sense, ML algorithms estimate functional
relationships without being given any explicit instructions of

how to analyze or draw conclusions from the data. Learning
algorithms can recover mappings between a set of inputs and
corresponding outputs or just from the inputs alone. Without
output labels, the algorithm is left on its own to discover
structure in the data.
Universal approximators343,344 are commonly used for that

purpose. These reconstruct any function that fulfills a few basic
properties, such as continuity and smoothness, as long as
enough data is available. Smoothness is a crucial ingredient
that makes a function learnable, because it implies that
neighboring points are correlated in similar ways. That
property means that one can draw successful conclusions
about unknown points as long as they are close to the training
data (coming from the same underlying probability distribu-
tion).341 In contrast, completely random processes in the
above sense allow no predictions.
An association that immediately springs to mind is

traditional regression analysis, but ML goes a step further.

Figure 6. Supervised learning algorithms have to balance two sources of error during training: the bias and variance of the model. A highly biased
model is based on flawed assumptions about the problem at hand (under-fitting). Conversely, a high variance causes a model to follow small
variations in the data too closely, therefore making it susceptible to picking up random noise (overfitting). The optimal bias-variance trade-off
minimizes the generalization error of the model, for example, how well it performs on unknown data. It can be estimated with cross-validation
techniques.
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Regression analyses aim to reconstruct the function that goes
through a set of known data points with the lowest error, but
ML techniques aim to identify functions to predict
interpolations between data points and thus minimize the
prediction error for new data points that might later appear.345

Those contrasting objectives are mirrored in the different
optimization targets. In traditional regression, the optimization
task
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only measures the fit to the data, but learning algorithms
typically aim to find models f ̂ that satisfy
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Both optimization targets reward a close fit, often using the
squared loss f fx y x y( ( ), ) ( ( ) )2̂ = ̂ − . However, the key
difference is an additional regularization term in eq 22, which
influences the selection of candidate models by introducing
additional properties that promote generalization. To under-
stand why this is necessary, it is helpful to consider that eq 22
is only a proxy for the optimization problem
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that we would actually like to solve. In an ideal world, we
would minimize the loss function over the complete distribution
of inputs and labels p(x, y). However, this is obviously
impossible in practice, so we apply the principle of Occam’s
razor that presumes that simpler (parsimonious) hypotheses
are more likely to be correct. With this additional
consideration we hope to be able to recover a reasonably
general model, despite only having seen a finite training set. A
common way to favor simpler models is via an additional term
in the cost function, which is what ∥ΓΘ∥2 in eq 22 expresses.
Here, Γ is a matrix that defines “simplicity” with regard to the
model parameters Θ. Usually, IλΓ = (where I is the identity
matrix and λ > 0) is chosen to simply favor a small L2-norm on
the parameters, such that the solution does not rely on
individual input features too strongly. This particular approach
is called Tikhonov regularization,346−348 but other regulariza-
tion techniques also exist.349,350

A model that is heavily regularized (i.e., using a large λ) will
eventually become biased in that it is too simplistic to fit the
data well. In contrast, a lack of regularization might yield an
overly complex model with high variance. Such an “overly fit”
model will follow the data exactly to the point that it also
models the noise components and consequently fails to
generalize (see Figure 6). Finding the appropriate amount of
regularization λ to manage under- and overfitting is known as
attaining a good bias-variance trade-of f.351 We will introduce a
process called cross-validation to address this challenge further
below (see section 3.4.3).
3.1.1. What Does ML Do Well? Implicit Knowledge from

Data. ML algorithms can infer functional relationships from
data in a statistically rigorous way without detailed knowledge
about the problem at hand. ML thus captures implicit
knowledge from a data set−even aspects where CPI might
not be available. Traditional modeling approaches, such as the

classical force fields discussed in section 2.2.6, rely on
preconceived notions about the PES that is being modeled
and, thus, the way the physical system behaves. In contrast, ML
algorithms start from a loss function and a much more general
model class. Within the limits permitted by the noise inherent
to the data, generalization can be improved to arbitrary
accuracy given increasingly larger informative training data
sets. This process allows us to explore a problem even before
there is a reasonably full understanding. An ML predictor can
serve as a starting point for theory building and be regarded as
a versatile tool in the modeling loop: building predictive
models, improving them, enriching them by formal insight, and
improving further and ultimately extracting a formal under-
standing. More and more research efforts start to combine
data-driven learning algorithms with rigorous scientific or
engineering theory to yield novel insights and applica-
tions.10,16,352

Redundancy in CompChem Calculations. For a quantum
chemical property for compounds in a data set, CompChem
calculations need to be repeated independently for each input,
even if they are very similar. No formally rigorous method
exists to exploit redundancies in the calculations in such a
scenario. The empiricism of learning algorithms however does
provide a pathway to extract information based on compound
structure similarity. A data-driven angle allows one to ask
questions in new ways that give rise to new perspectives on
established problems. For example, unsupervised algorithms
like clustering or projection methods group objects according
to latent structural patterns and provide insights that would
remain hidden when only looking at individual compounds.

3.1.2. What Does ML Do Poorly? Lack of Generality
and Precision. Some difficult problems in chemistry and
physics can be solved accurately with CompChem, but doing
so would require significant resources. For example, enumerat-
ing all pairwise interactions in a many-body system will
inevitably scale quadratically, and there is no obvious path
around this. One might ask if empirical approaches can address
such fundamental problems more efficiently, but this is
unfortunately not possible since ML is more suited for finding
solutions in general function spaces rather than in
deterministic algorithms where constraints guide the solution
process. However, if we were not as interested in finding a full
solution but rather some aspect of it, the stochastic nature of
ML can be beneficial. For instance, a traditional ML approach
might not be the best tool for explicitly calculating the
Schrödinger equation, but it might be a far more useful tool for
developing a force field that returns the energy of a system
without the need for a cumbersome wavefunction and a self-
consistent algorithm. As an example, Hermann et al.105 used
deep NNs to show how ML methods may be suitable for
overcoming challenges faced by traditional CompChem
approaches.

Reliance on High-Quality Data. ML algorithms require a
large amount of high quality data, and it is hard to decide a
priori when a data set is sufficient. Sometimes, a data set may
be large, but it does not adequately sample all the relevant
systems one intends to model. For example, an MD simulation
might generate many thousands of molecular confirmations
used to train an ML force field, but perhaps that sampling only
occurred in a local region of the PES. In this case, the ML force
field would be effective at modeling regions of the PES it was
trained to but useless in other regions until more data and
broader sampling occurred. This feature is general to all
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empirical models that are generally limited in their
extrapolation abilities.
Inability to Derive High-Level Concepts. Standard ML

algorithms cannot conceptualize knowledge from a data set.
Two main reasons are the nonlinearity and excessive
parametric complexity of most models that allow many equally
viable solutions for the same problem.353,354 It can be hard to
gain insight into the modeled relationship because it is not
based on a small set of simple rules. Techniques have emerged
to make ML models interpretable (explainable AI−XAI355).
While helpful, drawing scientific insight clearly still requires
human expertise.352,355−361 Furthermore, the path from an ML
model back to a physical set of equations is being explored, but
it is far from being fully established automatically.362−368

Prone to Artifacts. Despite following the rules of best
practice, ML algorithms can give unexpected and undesired
results. Instead of extracting meaningful relationships, they
may occasionally exploit nuisance patterns within the under-
lying experimental design, like the model architecture, the loss
function or artifacts in the data set. This results in a “clever
Hans” predictor,360 which technically manages the learning
problem but uses a trivial solution that is only applicable within
the narrow scope of the particular experimental setup at hand.
The predictor will appear to be performing well, while actually
harvesting the wrong information and, therefore, not allowing
any generalization or transferable insights.
For example, a recently proposed random forest predictor

for the success of Buchwald−Hartwig coupling reactions369

was later revealed to give almost the same performance when
the original inputs were replaced by Gaussian noise.370,371 This
finding strongly suggested that the ML algorithm exploited
some hidden underlying structure in the input data,
irrespective of the chemical knowledge that was provided
through the descriptor. Even though the model might appear
quite useful, any conclusions that rely on the importance of the
chemical features used in the model were thus rendered
questionable at best. This example demonstrates that out-of-
sample validation alone is often not sufficient to establish that a
proposed model has indeed learned something meaningful.
Therefore, the hypothesis described by the model must be
challenged in extensive testing in practically relevant scenarios
like actual physical simulations. In other words the ML model
needs to lead to a better understanding of the modeling itself
and the underlying chemistry.

3.2. Types of Learning

ML models are classified by the type of learning problem they
solve. Consider for instance a data scientist who develops an
ML model that can predict acidity constants (pKa values) for
any molecule. A researcher with knowledge of physical organic
chemistry might be aware of the empirical Taft equation29 that
provides a linear free energy relationship between molecules
on the basis of empirical parameters that account for a
molecule’s fundamental field, inductive, resonance, and steric
effects (e.g., values related to Hammett ρ and σ values). There
are several ways the data scientist might develop an ML model
for this or another application. Examples mentioned here
include supervised, unsupervised, and reinforcement learning.
3.2.1. Supervised Learning. Supervised learning addresses

learning problems where the ML model f :
ML̂ ⎯→⎯ connects

a set of known inputs and outputs , either to perform a
regression or classification task. While the former maps onto a
continuous space (e.g., energy, polarizability), the latter

outputs a categorical value (e.g., acid or base; metal or
insulator) for each data point.
Using the pKa predictor example, a supervised learning

algorithm could be trained to correlate recognizable chemical
patterns or structures to experimentally known pKa values. The
goal would be to deduce the relationship between these inputs
and outputs, such that the model is able to generalize beyond
the known training set. A standard universal approximator has
to accomplish this learning task without any preconceived
notion about the problem at hand and will, therefore, likely
require many examples before it can make accurate predictions.
Recently, a lot of research is being carried out that investigates
ways to incorporate high-level concepts into the learning
algorithm in the form of prior knowledge.207,372 In this vein,
one could take into account chemically relevant parameters,
such as Hammett constants so that the parametrized ML
model incorporates the modified Hammett or Taft equation.
An example of a classification problem in materials science is
the categorization of materials, where identifying character-
istics of the electronic structure can be used to distinguish
between insulators and metals.373

3.2.2. Unsupervised Learning. Unsupervised learning
describes problems in which only the inputs are known, with
no corresponding labels. In this setting, the goal is to recover
some of the underlying structure of the data to gain a higher-
level understanding. Unsupervised learning problems are not as
rigorously defined as supervised problems in the sense that
there can be multiple correct answers, depending on the model
and objective function that is applied.
For example, one might be interested in separating

conformers of a molecule from an MD trajectory, given
exclusively the positions of the atoms. A clustering algorithm
(like the k-means algorithm) could identify those conformers
by grouping the data based on common patterns.374,375

Alternatively, a projection technique could reveal a low-
dimensional representation of the data set.376 Often data is
represented in high dimension, despite being intrinsically low-
dimensional. With the right projection technique, it is possible
to retain the meaningful properties in a representation with
fewer degrees of freedom. A conceptually simple embedding
method is principal component analysis (PCA) in which the
relationship that is sought to be preserved is the scalar product
between the data points.340 There are many other linear and
nonlinear projection methods, such as multidimensional
scaling,377 kernel PCA (KPCA),378,379 t-distributed stochastic
neighbor embedding (t-SNE),380 sketch-map,381 and the
uniform manifold approximation and projection (UMAP).382

Finally, anomaly detection is another extension of unsuper-
vised learning, where ’outliers’ to the available data can be
discovered.383 However, without knowing the labels (in this
example, the potential energy associated with each geometry),
there is no way to conclusively verify that the result is correct.
The literature is gradually seeing more instances of
unsupervised learning, particular to reveal important chemical
properties to efficiently explore chemical/materials spaces.

3.2.3. Reinforcement Learning. Reinforcement learning
(RL) describes problems that combine aspects of supervised
and unsupervised learning. RL problems often involve defining
an agent within an environment that learns by receiving
feedback in the form of punishments and rewards. The
progress of the agent is characterized by a combination of
explorative activity and exploitation of already gathered
knowledge.384 For chemistry applications, RL techniques are
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being increasingly used for finding molecules with desired
properties in large chemical spaces.10

3.3. Universal Approximators

Universal approximators have their origins in the 1960s, where
the hope was to construct “learning machines” that have
similar capabilities as the human brain. An early mathematical
model of a single simplified neuron emerged that was called a
perceptron (eq 24).385,386
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Here, x denotes the N-dimensional input to the perceptron. It
has N + 1 parameters consisting of wi (so-called weights) and a
single b (a so-called threshold) that are adapted to the data.
This adaption process is typically called “learning” (vide infra),
and it amounts to minimizing a predefined loss function.
In the 1960s, this simple NN had very limited use, as it was

only able to model a linear separating hyperplane. Even simple
nonlinear functions like the XOR were out of reach.387 Thus,
excitement waned but then reappeared two decades later with
the emergence of novel models consisting of more neurons and
their arrangement in multilayer NN structures388 (see eq 25).
Recent algorithmic and hardware advances now allow deep
and increasingly complex architectures.1,2
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In eq 25, g(·) denotes an activation function that is a nonlinear
transformation that allows complex mappings between input
and output. As with the perceptron, the parameters of
multilayer NNs can be learned efficiently using iterative
algorithms that compute the gradient of the loss-function using
the so-called back-propagation (BP) algorithm.388−390 In the
late 1980s, artificial NNs were then proven to be universal
approximators of smooth nonlinear functions,343,391,392 and so
they gained broad interest even outside the ML community
that then was still relatively small.
In 1995, a novel technique called Support Vector Machine

(SVM)345,393 and kernel-based learning were then pro-
posed,379,394−396 which came with some useful theoretical
guarantees. SVMs implement a nonlinear predictor:

f y K bx x x( ) ( , )
j

N

j j j
1

∑ α= −
= (26)

where K is the so-called kernel. The kernel implicitly defines an
inner product in some feature space and thus avoids an explicit
mapping of the inputs. This “kernel trick”397 makes it possible
to introduce nonlinearity into any learning algorithm that can
be expressed in terms of inner products of the input.379 It has
since been applied to many other algorithms beyond SVMs,394

such as Gaussian Processes (GP),348 PCA,378,379 and
independent component analysis (ICA).398

The most effective kernels are tailored to the specific
learning task at hand, but there are many generic choices, such
as the polynomial kernel K(xj, x) = (⟨xj, x⟩ − b)d, which
describes inner products between degree d polynomials.
Another popular choice is the Gaussian kernel K(xj, x) =
exp(−(xj − x)2/(2σ2)). It is one of the most versatile kernels

because it only imposes smoothness assumptions on the
solution depending on the width parameter σ.347,395

As seen in eq 26, an SVM can also be understood as a
shallow NN with a fixed set of nonlinearities. In other words,
the kernel explicitly defines a similarity metric to compare data
points, whereas NNs have more freedom to shape this
transformation during training because they nest parametriz-
able nonlinear transformations on multiple scales. This
difference gives both techniques unique strengths and
drawbacks. Despite that, there exists a duality between both
approaches that allows NNs to be translated into kernel
machines and analyzed more formally (see refs 399−401).
In the context of CompChem, both NNs and kernel-based

methods are the most used ML approaches. Simpler learners,
such as nearest neighbor models or decision trees can still be
surprisingly effective. Those have also been successfully used to
solve a wide spectrum of problems including drug design,
chemical synthesis planning, and crystal structure classifica-
tion.402−407

3.4. ML Workflow

In the following, we summarize the overall ML process,
starting from a data set all the way to a trained and tested
model. The ML workflow typically includes the following
stages:

1 Gathering and preparing the data

2 Choosing a representation
3 Training the model

3a Train model candidates
3b Evaluate model accuracy
3c Tune hyperparameters

4 Testing the model out of sample
Note, that the progression to a good ML model is not

necessarily linear and some steps (except the out of sample
test) may require reiteration as we learn about the problem at
hand.

3.4.1. Data Sets. On a fundamental level, ML models
could be simply regarded as sophisticated parametrizations of
data sets. While the architectural details of the model matter,
the reference data set forms the backbone that ultimately
determines the model’s effectiveness. If the data set is not
representative of the problem at hand, the model will be
incomplete and behave unpredictably in situations that have
been improperly captured. The same applies to any other
shortcomings of the data set, such as biases or noise artifacts
that will also be reflected in the model. Some of these data set
issues are likely to remain unnoticed when following the
standard model selection protocol since training and test data
sets are usually sampled from the same distribution. If the
sampling method is too narrow, errors seen during the cross-
validation procedure may appear to be encouragingly small,
but the ML model will fail catastrophically when applied to a
real problem. If the training and test sets come from different
distributions, then techniques to compensate this covariate
shift can be used.408,409

Robust models can generally only be constructed from
comprehensive data sets, but it is possible to incorporate
certain patterns into models to make them more data-efficient.
Prior scientific knowledge or intuition about specific problems
can be used to reduce the function space from which an ML
algorithm has to select a solution. If some of the unphysical
solutions are removed a priori, less data are necessary to
identify a good model. This is why NNs and kernel methods,
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despite both being broad universal function classes, bring
different scaling behaviors. The choice of the kernel function
provides a direct way to include prior knowledge such as
invariances, symmetries, or conservation laws, whereas NNs
are typically used if the learning problem cannot be
characterized as specifically.207,372,410 In general, without
prior knowledge, NNs often require larger data sets to produce
the same accuracy as well-constrained kernel methods that
embody problem knowledge. This consideration is particularly
important if the data is expensive, for example, if it comes from
high quality experiments or expensive computations.
3.4.2. Descriptors. To apply ML, the data set needs to be

encoded into a numerical representation (i.e., features/
descriptors) that allows the learning algorithm to extract
meaningful patterns and regularities.411−419 This is particularly
challenging for unstructured data like molecular graphs that
have well-defined invariable or equivariable characteristics that
are hard to capture in a vectorial representation. For example,
atoms of the same type are indistinguishable from each other,
but it is hard to represent them without imposing some kind of
order (which inevitably assigns an identity to each atom).
Furthermore, physical systems can be translated and rotated in
space without affecting many attributes. Only a representation
that is adapted to those transformations can solve the learning
problem efficiently.
It turned out to be a major challenge to reconcile all

invariances of molecular systems in a descriptor without
sacrificing its uniqueness or computability. Some representa-
tions cannot avoid collisions, where multiple geometries map
onto the same representation. Others are unique, but
prohibitively expensive to generate. Many solutions to this
problem have been proposed, based on general strategies such
as invariant integration,207 parameter sharing,352,421−423

density representations,276 or finger printing techniques.424−433

Alternatively, an NN model infers the representation from
data.352,424,434,435 To date, none of the proposed approaches
are without compromise, which is why the optimal choice of
descriptor depends on the learning task at hand.
3.4.3. Training. The training process is the key step that

ties together the data set and model architecture. Through the
choice of the model architecture, we implicitly define a
function space of possible solutions, which is then conditioned
on the training data set by selecting suitable parameters. This
optimization task is guided by a loss function that encodes our
two somewhat opposing objectives: (1) achieving a good fit to
the data, while (2) keeping the parametrization general enough
such that the trained model becomes applicable to data that is
not covered in the training set (see the two terms in eq 22).
Satisfying the latter objectives involves a process called model
selection in which a suitable model is chosen from a set of
variants that have been trained with exclusive focus on the first
objective. Depending on the model architecture, more or less
sophisticated optimization algorithms can be applied to train
the set of model candidates.
Kernel-based learning algorithms are typically linear in their

parameters α⃗ (see eq 26). Coupled with a quadratic loss
function, f fx x( ( ), y) ( ( ) y)2̂ = ̂ − , they yield a convex
optimization problem. Convex problems can be solved quickly
and reliably due to only having a single solution that is
guaranteed to be globally optimal. This solution can be found
algebraically by taking the derivative of the loss function and

setting it to zero. For example, kernel ridge regression (KRR)
and GPs then yield a linear system of the form

f x K( ( ), y) ( I) y 0λ α∇ ̂ = + − =α (27)

which is typically solved in a numerically robust way by
factorizing the kernel matrix K. There exist a broad spectrum
of matrix factorization algorithms, such as the Cholesky
decomposition, that exploit the symmetry and positive
definiteness properties of kernel matrices.436−440 Factorization
approaches are, however, only feasible if enough memory is
available to store the matrix factors, and this can be a limitation
for large-scale problems. In that case, numerical optimization
algorithms provide an alternative: they take a multistep
approach to solve the optimization problem iteratively by
following the gradient:
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where γ is the step size (or learning rate). Iterative solvers
follow the gradient of the loss function until it vanishes at a
minimum, which is much less computationally demanding per
step, because it only requires the evaluation of the model f.̂ In
particular, kernel models can be evaluated without storing K
(see eq 28).
NNs are constructed by nesting nonlinear functions in

multiple layers, which yields nonconvex optimization prob-
lems. Closed-form solutions similar to eq 27 do not exist,
which means that NNs can only be trained iteratively, that is,
analogous to eq 28. Several variants of this standard gradient
descent algorithm exist including stochastic or mini-batch
gradient descent, where only an n-sized portion of the training
data (x,y)i:i+n is considered in every step. Because of multiple
local minima and saddle points on the loss surface, the global
minimum is exponentially hard to obtain (since these
algorithms usually converge to a local minimum). However,
thanks to the strong modeling power of NNs, local solutions
are usually good enough.441

Hyperparameters. In addition to the parameters that are
determined when fitting an ML model to the data set (i.e., the
node weights/biases or regression coefficients), many models
contain so-called hyperparameters that need to be fixed before
training. Two types of hyperparameters can be distinguished:
ones that influence the model, such as the type of kernel or the
NN architecture, and ones that affect the optimization
algorithm, for example, the choice of regularization scheme
or the aforementioned learning rate. Both tune a given model
to the prior beliefs about the data set and thus play a significant
role in model effectiveness. Hyperparameters can be used to
gauge the generalization behavior of a model.
Hyperparameter spaces are often rather complex: certain

parameters might need to be selected from unbounded value
spaces, others could be restricted to integers or have
interdependencies. This is why they are usually optimized
using primitive exhaustive search schemes like grid or random
searches in combination with educated guesses for suitable
search ranges. Common gradient-based optimization methods
typically cannot be applied for this task. Instead, the
performance of a given set of hyperparameters is measured
by evaluating the respective model on another training data set
called the validation data set (see Figure 6). This process is
also referred to as model selection.
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Model Selection. Cross-validation or out-of-sample testing
is a technique to assess how a trained ML model will generalize
to previously unseen data.340,395 For a reasonably complex
model, it is typically not challenging to generate the right
responses for the data known from the training set. This is why
the training error is not indicative of how the model will fulfill
its ultimate purpose of predicting responses for new inputs.
Alas, since the probability distribution of the data is typically
unknown, it is not possible to determine this so-called
generalization error exactly. Instead, this error is often estimated
using an independent test subset that is held back and later
passed through the trained model to compare its responses to
the known test labels. If the model suffers from overfitting on
the training data, this test will yield large errors. It is important
to remember not to tweak any parameters in response to these
test results, as this will skew this assessment of the model
performance and will lead to overfitting on the test set.442

Besides cross-validation, there are alternative ways to
estimate the generalization error, for example via maximization
of the marginal likelihood in Bayesian inference.443−445 Some
well-defined learning scenarios even allow the computation of
rigorous upper bounds for the generalization error.345,446−448

4. APPLICATIONS OF MACHINE LEARNING TO
CHEMICAL SYSTEMS

We now discuss ways that CompChem methods described in
section 2 and ML methods in section 3 can be implemented as
CompChem+ML approaches for insights into chemical
systems. We often notice the lack of details about why an
ML model is used and how it actually contributes to

worthwhile and scientific insights. Thus, we will summarize
the underlying attributes of conventional CompChem+ML
efforts and then explain why these attributes are important for
specific applications.
To begin, consider molecules or materials in a data set, and

any entry will be related to another based on an abstract
concept of “similarity”. While similarity is an application-
dependent concept, it should go hand in hand with CPI. For
instance, physical properties of chemical systems can be
attributed to the structure or composition of the chemical
fragments within those systems. Thus, if chemical structures
and compositions of two entries in the database were similar,
then their physical properties would also likely be similar.
For CompChem+ML using a supervised algorithm, a

CompChem prediction might be made on a hypothetical
system, pinpointed by an ML model that was trained to
identify chemical fragments that correlate with labeled physical
properties. This would be a direct exploitation of chemical
similarity. Alternatively, for CompChem+ML using an
unsupervised algorithm, the ML model would identify an
underlying distribution or key features based on the similarity
between pairs of entries in the data set without labels. This
would be a more nuanced leveraging of chemical similarity. In
both cases the accuracy, efficiency and reliability of the ML
models depend strongly on how similarity is defined and
measured.
In this section, we will first describe state-of-the-art

descriptors and kernels for atomic systems that can be used
to quantify the similarity between chemical systems. We will
then explain the essential attributes of good atomic descriptors.

Table 4. ML Descriptors Found in the Literaturea

invariancesd

descriptors comp. efficiencyb periodicc unique T R P global smoothe

atom-centered symmetry functions (ASCF)411 Ⓑ 1,2,3-body terms, cutoff √ X √ √ √ X √
smooth overlap of atomic positions (SOAP)412 Ⓑ density based, SO(3) rotational group

integration
√ X √ √ √ X √

Coulomb matrix (CM)413 Ⓐ 1,2-body terms X √ √ √ X √ √
sine matrix414 Ⓐ 1,2-body terms √ √ √ √ X √ √
Ewald sum matrix414 Ⓐ 1,2-body terms √ √ √ √ X √ √
bag of bonds (BoB)415 Ⓐ 1,2-body terms X X √ √ ○ √ X
Faber−Christensen−Huang−Lilienfeld (FCHL)416 Ⓒ 1,2,3-body terms √ X √ √ √ X √
spectrum of London and Axilrod−Teller−Muto potential
(SLATM)417

Ⓓ 1,2,3,4-body terms √ X √ √ √ X √

many-body tensor representation (MBTR)418 Ⓒ 1,2,3-body terms X X √ √ √ √ √
atomic cluster expansion420 Ⓐ 1,2-body terms √ X √ √ √ √ √
invariant many-body interaction descriptor (MBI)460 Ⓑ 1,2,3-body terms X X √ √ √ X √

neural network architectures
deep potentialsmooth edition (DeepPot-SE)461,462 Ⓑ 1,2,3-body terms, cutoff √ X √ √ √ X √
MPNN, SchNet352,434 Ⓐ/Ⓑ 1,2-body terms, hierarchical √ X √ √ √ X √
Cormorant463 Ⓑ 1,2-body terms, hierarchical X X √ √ √ X √
tensor field networks464 Ⓑ 1,2-body terms √ X √ √ √ X √

similarity metrics
root mean square deviation of atomic positions
(RMSD)454

Ⓐ 1,2-body terms, input matching X X ○ ○ X √ X

overlap matrix454 Ⓐ 1,2-body terms, input matching X X √ √ √ √ X
REMatch459 Ⓒ 1,2-body terms, input matching X X √ √ √ √ X
sGDML207 Ⓐ 1,2-body terms √ √ √ √ ○f √ √
a“√” = satisfies condition; “○” = partially satisfies condition; “X” = does not satisfy condition. bComputational efficiency ranks with grades Ⓐ−Ⓓ
in descending order. The efficiency class reflects the extent that the descriptor requires expensive operations (e.g., a hierarchical processing or
matching of inputs). cDescriptor has been used within periodic boundary conditions. d“T” = translational; “R” = rotational; “P” = permutational.
eIn this context, a descriptor is referred to as smooth if its first derivative with respect to nuclear positions is continuous. fOnly invariant to
permutations represented in the training data.
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Lastly for this section, we will elucidate why and how specific
combinations of these descriptors and ML algorithms are
beginning to revolutionize the field of CompChem.
4.1. Representing Chemical Systems

In CompChem, molecules and materials are usually
represented by the Cartesian coordinates and the chemical
elements of all the atoms. Thus, the size of the vector
representation containing the coordinates and charges will be

andN N3{ }, respectively, for a system of size N. Even
though these atomic coordinates provide a complete
description of the system, they are hardly ever used as the
input of a ML model because this vector would introduce
substantial superfluous redundancy. For instance, an ML
model might treat two identical molecules that are rotated or
translated as different molecules, and that in turn might cause
the ML model to predict different physical properties for the
two otherwise indistinguishable molecules. There are further
difficulties when comparing molecules having different
numbers of atoms. To work around these problems, atomic
coordinates are usually converted into an appropriate
representation ψ that is suitable for a particular task. Such
conversions are useful because they allow the incorporation of
physical invariances. Mathematically speaking, the representa-
tion fulfills

S( , ) ( ( , ))N N N N3 3ψ ψ{ } = { } (29)

where S indicates a symmetry operation, for example, a rigid
rotation about an axis Ci, an exchange of two identical atoms,
or a translation of the whole system in the Cartesian space, etc.
It can also be advantageous to adopt a coarse-grained
representation of the system.449,450 For example, dihedral
angles of a peptide might be accounted for without the
positions of the side-chains, positions of ions in a solution
might be accounted for without the explicit coordinates of
solvents, or just the center of mass for a water molecule might
be accounted for in place of the full three-centered atomistic
representation. The choice of these coarse-grained representa-
tions provides a way to incorporate prior knowledge of the
data, or such representations can be learned from an
unsupervised learning step.451

4.1.1. Descriptors. Atomistic systems can be represented
in a myriad of ways. Some descriptions are designed to
emphasize particular aspects of a system, while others aim to
disambiguate similar chemical or physical principles across a
wide range of molecules or materials. The set of desirable
properties in a representation thus depends on the task at
hand. All adhere to the aforementioned physical symmetries
and invariances needed for chemical systems. Many have
similar theoretical foundations that can be understood as the
basis onto which the atomic density is projected,452 and the
connection between them has been summarized in a recent
review.453

Table 4 gives a coarse characterization of popular
representations.276,411,412,415,417,418,454,455 To create this over-
view, we had to adopt a reductionist perspective, which
inevitably hides the complexities involved in developing robust
atomistic representations. Whether a representation satisfies a
particular property can sometimes not be answered unequiv-
ocally. For example, is a descriptor unique if the ML model
showed pathologically erroneous results? Should a symmetry
be perfectly satisfied, even if it is a bad ML feature? We
therefore stress that the table simply presents representations

and their attributes. A representation that satisfies more
attributes is not necessarily better if it also lacks another
important attribute. We kindly refer the reader to the
respective original publications for more information.
The descriptors in Table 4 can be classified into two

categories: global and atomic (i.e., not global). Traditional
descriptors used in cheminformatics are global descriptors
based on the covalent connectivity of atoms. These include
simple valence counting and common neighbor analysis,456 the
presence or absence of predefined atomic fragments (e.g., the
Morgan fingerprints427), pairwise distances between atoms
(e.g., Coulomb Matrix,413 Sine Matrix,414 Ewald Sum
Matrix,414 Bag of Bonds (BoB)415), etc. Coulomb matrices
have known problems because of lack of smoothness, but these
are partly addressed by employing the Wasserstein norm,
rather than Euclidean or Manhattan norms.457 However,
atomic descriptors411,412,416−420,458 are generally more popular
than the global ones in ML and CompChem. In atomic
descriptors, a chemical system is described as a set of atomic
environments, , ... ...i N1 , and each consists of the atoms
(chemical species and position) within a sphere of radius rcut
centered at a specific atom i. One needs to combine the set of
atomic descriptors of all environments to construct a
descriptor for the entire atomic structure. The most
straightforward way to do this is to average the atomic
descriptors,

A
N

( )
1

( )
i A

N

i
A

A

∑ ψΦ =
∈ (30)

where the sum runs over all NA atoms i in structure A and i is
the environment around atom i. When there are multiple
chemical species, the descriptors for the local environments of
different species can either be included in the single sum, or
the averaging can be performed for the environments of each
species separately and the species-specific averaged local
descriptors can be concatenated. This can be done by
considering the root mean square displacement (RMSD),454

the best match between the environments of the two structures
(best-match),459 or by combining local descriptors using a
regularized entropy match (RE-Match).459

4.1.2. Representing Local Environments. We will now
describe the Smooth Overlap of Atomic Positions (SOAP)
descriptors412 since many other descriptors based on the
atomic density are similar and differ mainly by how the density
is projected onto basis functions.420,452 To construct SOAP
descriptors, one first considers an atomic environment that
contains only one atomic species, and a Gaussian function of
width σ is then placed on each atom i in to make an atomic
density function:
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Ç
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2

2 cuti
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σ
= −

| − |
| |

∈ (31)

Here, r denotes a point in Cartesian space, ri is the position of
atom i relative to the central atom of , and the cutoff function
fcut smoothly decays to zero beyond the cutoff radius rcut. This
density representation ensures invariance with respect to
translations and permutations of atoms of the same species but
not rotations. To obtain a rotationally invariant descriptor, one
expands the density in a basis of spherical harmonics, Ylm(r)̂,
and a set of orthogonal radial functions, gn(|r|), as
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c g Yr r r( ) ( ) ( )
nlm

nlm n lm∑ρ = | | ̂
(32)

to construct the power spectrum of the density using the
expansion coefficients:

l
c c( )

8
2 1

( )nn l
m

nlm n lm∑ψ =
+

*
′ ′

(33)

One then obtains a vector of descriptors ψ = {ψnn′l} by
considering all components l ≤ lmax and n, n′ ≤ nmax that act as
band limits that control the spatial resolution of the atomic
density. The generalization to more than one chemical species
is straightforward:459 one constructs separate densities for each
species α and then computes the power spectra ( )nn lψ αα

′
′ for

each pair of elements α and α′, where the two species indices
correspond to the c* and c coefficients, respectively. The
resulting vectors corresponding to each of the α and α′ pairs
are then concatenated to obtain the descriptor vector of the
complete environment.
Atom-centered symmetry functions (ACSFs), or sometimes

called Behler−Parrinello symmetry functions,411 descriptors
differ from SOAP in that they project the atomic densities over
selected 2-body or 3-body symmetry functions. FCHL417

descriptors follow similar principles while also considering the
correlations between the atomic densities coming from
different chemical species. The many-body tensor representa-
tion (MBTR)418 approach involves taking the histograms of
atom counts, inverse pairwise distances, and angles. Atomic

cluster expansion (ACE) descriptors420 first express atomic
densities using spherical harmonics and then generate invariant
products by contracting the spherical harmonics with the
Clebsch−Gordan coefficients.

Length-Scale Hyperparameters. Most atomic descriptors
use length-scale hyperparameters specifically chosen for a given
problem and system.276,411,412,415,417,418,454,455 There are
several ways to automate hyperparameter selections. Ref 374
introduced general heuristics for choosing the SOAP hyper-
parameters for a system with arbitrary chemical composition
based on characteristic bond lengths. Ref 465 adopts the
strategy to first generate a comprehensive set of ACSFs and
then select a subset using the sparsification methods such as
farthest point sampling (FPS)466 and CUR matrix decom-
position.467

Incompleteness of Atomic Descriptors. A structural
descriptor is complete when there is no pair of configurations
that produces the same descriptor.468 For atomic descriptors,
this means that different atomic environmentsafter consid-
ering the invariances of rotation, translation, and permutation
of identical atomsshould adopt distinct descriptors. Without
completeness, any ML model using the descriptors as input
will give identical predictions of physically different systems.
Ensuring completeness while preserving the invariances is
nontrivial, however. One of the simplest descriptors is based
on permutationally invariant pairwise atomic distances (2-body
descriptors), and ref 412 demonstrated that these are generally
not complete since one can construct two distinct tetrahedra
using the same set of distances. Many have assumed that

Figure 7. KPCA maps of carbon atom environments in the QM9 database. Maps are color-coded according to Mulliken charges (a), hybridization
(b), whether atoms are found in rings (c) and according to local energies predicted by a machine learning potential (d). Reprinted with permission
from ref 374. Copyright 2020 American Chemical Society.
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permutationally invariant 3-body atomic descriptors uniquely
specify atomic environments because of the tremendous
success of ML models for chemical systems and particularly
MLPs. However, refs 469 and 468 exemplify that structural
degeneracies can be found even when using 3- or 4-body
descriptors. This underscores an important shortcoming of
state-of-the-art 3-body descriptors, such as ACSF,411 SOAP,412

FCHL,417 and MBTR.418 ACE420 should be a complete
descriptor of local environments, but its reliance on spherical
harmonic expansion and the subsequent contraction makes
their evaluations expensive. Hence, there are still opportunities
to develop improved atomic descriptors.
4.1.3. Locality Approximation. Representing a many-

body chemical system in terms of atomic environments brings
physical significance since certain extensive physical properties
(e.g., the total energy, total electrostatic charge, and polar-
izability of a system) can be approximated by the sum of the
atomic contributions coming from each atomic environment,
for example, ( )i iθΘ = ∑ . This approximation is valid
because the atomic contribution associated with a central
atom is largely determined by its neighbors, and long-range
interactions can be approximated in a mean-field manner
without explicitly considering distant atoms. Such “locality” is
tacitly assumed in many ML models for CompChem, and it is
a crucial necessity for most common atomistic potentials and
MLPs (section 2.2.6.). Most MLPs (e.g., BPNN,274 GAP,276

and DeepMD462) approximate the total energy of a system as
sums of local atomic energies.
Figure 7 illustrates locality by showing a KPCA map of the

atom environments of carbon in the QM9 set (see section 3.3
for more detailed descriptions of the data set). By color-coding
the KPCA plot with the local energies from a SOAP-based
GAP model trained on QM9 energies,470 one observes a
systematic and smooth trend in energies across clusters. The
total molecular energy can then be accurately predicted by the
sum of local energies, which means the total energy can be
approximated on the basis of all the local environments
contained in the molecule. For example, an NN potential
trained on liquid water simulations can predict the densities,
lattice energies, and vibrational properties of diverse ice phases
because the local atomic environments found in liquid water
span the similar environments as those observed in ice
phases.471 Another GAP potential of carbon trained on
amorphous structures and other crystalline phases predicted
novel carbon structures in random structure searches as well as
approximate reaction barriers.472,473

The locality approximation is typically rationalized based on
the multiscale nature of interatomic interactions in chemical
systems. It is generally expected that shorter interatomic
distances correspond to stronger interactions, such that a
cutoff may be imposed after a certain radial distance d given a
certain energy accuracy threshold ϵ. The multiscale nature of
physical interactions underlies the usual classification of
chemical interactions, from strong covalent bonds and ionic
interactions to weaker noncovalent hydrogen bonds and van
der Waals interactions. However, our understanding of
noncovalent interactions in large molecules and materials is
still emerging,36 and no general rules-of-thumb exist to define
the cutoff distance d corresponding to a defined ϵ. Moreover,
the sufficiency of the locality argument also depends on the
phase of the system and whether the system is extended or
not.474 Hence, for systems having long-range interactions

(which includes most chemical systems), the locality
assumption needs revision. There are currently three schools
of approaches handling the long-range interactions. The first is
to use global ML models, such as (s-)GDML,207,372 which
learn global interactions directly. Global models tend to be
more data-efficient because they focus on learning a full
molecular or material PES, but this significantly limits
transferability since the ML model alone can only be used
on the system it was trained upon. The second is to learn the
charges475,476 and multipoles477 for each atom, and then the
long-range electrostatic interactions based on environment-
dependent charges or multipoles can be explicitly included
using Coulomb’s law. To ensure that the sum of the atomic
charges reaches neutrality, charge equilibration schemes can be
used.478 The third is to capture the long-range electrostatic
effects by introducing a nonlocal long-distance equivariant
(LODE) representation,479,480 which is dependent on the
electrostatic field generated by the decorated atom density.

4.1.4. Advantages of Built-In Symmetries. Built-in
symmetry in ML models substantially compresses the
dimensionality of atomic representations and ensures that
physically equivalent systems are predicted to have identical
properties. One of the most rigorous ways of imposing
symmetry onto a model f is via the invariant integration over
the relevant group

f fx P x( ) ( )sym ∫=
π

π
∈ (34)

where Pπx is a permutation of the input. However, the
cardinality of even basic symmetry groups is exceedingly high,
which makes this operation prohibitively expensive. This
combinatorial challenge can be solved by limiting the invariant
integral to the physical point group and fluxional symmetries
that actually occur in the training data set, as done in
sGDML.207 Alternative approaches, such as parameter
sharing352,421−423 or density representations,276 have also
proven effective. For example, the DeepMD potential has
two versions, the Smooth Edition (DeepPot-SE) explicitly
preserves all the natural symmetries of the molecular system,
and the other version that does not.462 The DeepPot-SE offers
much improved stability and accuracy.207,462

For ML predictions of scalar properties, the rotationally
invariant atomic descriptor framework described earlier is
appropriate. One may wish to predict vectorial or tensorial
properties including dipole moments, polarizability, and
elasticity. A covariant version of descriptors may be advanta-
geous, and this can be expressed as

S S( ( )) ( ( ))N N3 3ψ ψ{ } = { } (35)

where S indicates a symmetry operation such as a rigid rotation
about an axis. Ref 481 proposed a general method for
transforming a standard kernel for fitting scalar properties into
a covariant one. Ref 482 derived a rotational-symmetry-
adapted SOAP kernel, which can be understood as using the
angular-dependent SOAP vectors based on spherical harmon-
ics expansions as the descriptors. Note that the SOAP kernels
for learning scalar properties introduced in ref 412 remove
angular dependencies by summing up the SOAP vectors in
separate spherical harmonics channels.
Symmetry can be further exploited into “alchemical”

representations that incorporate similarity between chemical
species that are relatable by changing one atom into another.
The FCHL417 representation considers the similarity between
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elements in the same row and columns of the periodic table
and performs very well on chemical compounds across
chemical space. Ref 483 compiled a data-driven periodic
table of the elements by fitting to an elpasolite data set using an
alchemical representation.
4.1.5. End-to-End NN Representations. All descriptors

introduced above rely on a suitable set of hyperparameters
(e.g., length scales, radial and angular resolution). Determining
an optimal set of hyperparameters can be a tedious process,
especially when heuristics are unavailable or fail due to the
structural and compositional complexity of the system. A poor
choice of descriptors can limit the accuracy of the final ML
model, for example, when certain interatomic distances can not
be resolved.
End-to-end NN representations follow a different strategy to

learn a representation directly from reference data. Using atom
types and positions of a system as inputs, end-to-end NNs
construct a set of atom-wise features xi. These features are then
used to predict the property of interest, for example, the energy
as a sum of atom-wise contributions. Unlike static descriptors,
the representation is also optimized as part of the overall
training process. This way end-to-end NNs can adapt to
structural features in the data and the target properties in a
fully automatic fashion to eliminate the need for extensive
feature engineering from the practitioner.
The deep tensor NN framework (DTNN)352 introduced a

procedure to iteratively refine a set of atom-wise features {xi}
based on interactions with neighboring atoms. Higher-order
interactions can then be captured in an hierarchical fashion.
For example, a first information pass would only capture radial
information, but further interactions would recover angular
relations and so on. In DTNN, a learnable representation
depending only on atom types xi

0 = ezi serves as an initial set of
features. These are then refined by successive applications of
an update function depending on the atomic environment that
takes the general form
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(36)

Here, l indicates the number of overall update steps. The sum
runs over all atoms j in the local environment, and a cutoff
function fcut ensures smoothness of the representation. Each
feature is updated with information from all neighboring atoms
through the interaction function G. Apart from the neighbor
features xj, G also depends on the interatomic distance |ri − rj|,
which is usually expressed in the form of a radial basis vector g.
After the update, an atom-wise transformation F can be applied
to further modulate the features. Since each update depends
only on the interatomic distances and the summation over
neighboring atoms is commutative, end-to-end NNs of this
type automatically achieve a representation that is invariant to
rotation, translation and permutations of atoms. Using these
atom-type dependent embeddings compactly encodes ele-
mental information. This is advantageous for systems
comprised of many different chemical elements. Such multi-
component systems can be problematic to treat with
predefined descriptors (e.g., ACSFs or SOAP), as these
typically introduce additional entries for each possible
combination of atom types, resulting in a large number of
descriptor dimensions.

Since the introduction of DTNN, many different types of
end-to-end NNs have been developed, and these vary by the
choice for the functions F and G. For example, SchNet434 uses
continuous convolutions inspired by convolutional neural
networks (CNNs) to describe the interatomic interactions.
In this case, the update in eq 36 takes the form
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(37)

where the feature transformation (NNtr) and the radial
dependence (NNrad) are both modeled as trainable NNs.
Other ML models introduce additional physical information.

The hierarchical interacting particle NN (HIP-NN)484

enforces a physically motivated partitioning of the overall
energy between the different refinement steps, while the
PhysNet architecture485 introduces explicit terms for long-
range electrostatic and dispersion interactions. In ref 421,
Gilmer et al. categorize graph networks of this general type as
message-passing NNs (MPNNs) and introduce the concept of
edge updates. These make it possible to use interatomic
information beside the radial distance metric in the refinement
procedure, and they have since been adapted for other
architectures.486 Another interesting extension are end-to-end
NNs incorporating higher-order features beside the scalar xi
used in the original DTNN framework. These are equivariant
features that encode rotational symmetry and can be based on
angles, dipole moment vectors, or features that can be
expressed as spherical harmonics with l > 0. This enables the
exchange of only radial information between atoms in each
interaction pass and instead include higher structural
information, such as dipole−dipole interactions or angular
information. In addition, equivariant end-to-end NNs can also
be used to predict vectorial or tensorial properties in a manner
similar to the rotational-symmetry-adapted SOAP kernel.
Examples include TensorField networks,464 Cormorant,463

DimeNet,487 PiNet,488 and FieldSchNet.300

4.2. From Descriptors to Predictions

After a descriptor vector for each chemical structure is defined,
one can then construct the design matrix and the kernel matrix
for a set of structures. These matrices can then be used as the
input of ML models. As described in section 2, supervised ML
methods, such as NNs and GPs, can be used to approximate
nonlinear and high-dimensional functions, particularly when
massive amounts of training data become available. Thus, one
should expect that using CompChem would be very useful for
generating a large amount of almost noise-free training data of
specific systems or atomic configurations, as long as a
physically accurate method is being applied in the right way
with appropriate computational resources. In contrast,
experimental observations can be difficult to measure and
reproduce precisely. Note that the aim of most CompChem
+ML efforts have a similar scope as decades-old quantitative
structure activity/property relationship (QSAR/QSPR) mod-
els that are often based on experiments or CompChem
modeling.326,327,489 Thus, researchers in CompChem+ML
should be aware of potentially relatable work done by the
QSAR/QSPR communities, and to what extent questions
being posed have been sufficiently answered. On the other
hand, ML usually provides higher accuracy than non-ML
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statistical models, and so QSAR/QSPR efforts have been
turning toward ML models as well.490

We have explained how data from different CompChem
methods, each containing different degrees of physical rigor,
can be used to train ML models. ML models in turn can be
created to approximate underlying high-dimensional functions
intrinsic to physical systems. For example, research efforts are
toward learning electron densities,491 density functionals,162

and molecular polarizabilities.492

Besides these direct learning strategies, ML has been used to
enhance the performance and suitability of CompChem
models. As mentioned in section 1, the Δ-ML493 approach is
now a common technique for adapting an ML model that
improves the quality of a theoretically insufficient but
computationally affordable method. This approach has been
used to learn many body corrections for water molecules to
allow a relatively inexpensive KS-DFT approach like BLYP to
more accurately reproduce CCSD(T) data.494 Along similar
lines, Shaw and co-workers used CompChem features along
with an NN to reweight terms from an MP2 interaction energy
to provide ML-enhanced methods with increased perform-
ance.126 Miller and co-workers have developed ML-models
where molecular orbitals themselves are learned to generate a
density matrix functional that provides CCSD(T)-quality PESs

with a single reference calculation.495 von Lilienfeld and co-
workers have investigated how the choice of regressors and
molecular representations for ML models impacts accuracy,
and their findings suggest ways that ML models may be trained
to be more accurate and less computationally expensive than
hybrid DFT methods.496 Burke and co-workers have studied
how ML methods can result in improved understanding and
more physical exact KS-DFT181,497−499 and OFDFT func-
tionals.161 Brockherde et al. have presented an approach, where
ML models can directly learn the Hohenberg−Kohn map from
the one-body potential efficiently to find the functional and its
derivative.162,184 Akashi and co-workers have also reported the
out-of-training transferability of NNs that capture total
energies, which shows a path forward to generalizable
methods.500

Toward predictive insights, there are many other approaches
that are broadly useful. One can exploit the “universal
approximator” nature of ML architectures to find a function
that gives the best solution in a variational setting. For
instance, using restricted Boltzmann machines501 or deep NNs
as a basis representation of wavefunctions105,106,502 in
Quantum Monte Carlo calculations. Alternatively, the use of
active learning might increase the efficiency, accuracy,
scalability, and transferability of ML models.503−505

Table 5. ML Databases for CompChem

database description location

AFLOWLIB databases containing calculated properties of over 625k materials510 http://www.aflowlib.org
ANI-1 large computational DFT database, which consists of more than 20 M off equilibrium

conformations for 57.5k small organic molecules511,512
https://github.com/isayev/ANI1_dataset

ANI-1x/ANI-
1ccx

ANI-1x contains multiple QM properties from 5 M DFT calculations, while ANI-1ccx
contains 500k data points obtained with an accurate CCSD(T)/CBS extrapolation513

https://github.com/aiqm/ANI1x_datasets

BindingDB measured binding affinities focusing on interactions of proteins considered to be
candidates as drug-targets; 1 200 000 binding data for 5500 proteins and over 520 000
drug-like molecules514

http://www.bindingdb.org

Clean Energy
Project

contains ∼10 000 000 molecular motifs of potential interest which cover small molecule
organic photovoltaics and oligomer sequences for polymeric materials515

http://cepdb.molecularspace.org

CoRE MOF database containing over 4700 porous structures of metal−organic frameworks with
publicly available atomic coordinates; includes important physical and chemical
properties516

10.11578/1118280

FreeSolv experimental and calculated hydration free energies for neutral molecules in water517 http://www.escholarship.org/uc/item/6sd403pz
GDB GDB-11, GDB-13, and GDB-17; together these databases contain billions of small organic

molecules following simple chemical stability and synthetic feasibility rules518
http://gdb.unibe.ch/downloads/

Hypothetical
Zeolites

contains approximately 1 M zeolite structures519 http://www.hypotheticalzeolites.net/

Materials
Project

contains computed structural, electronic, and energetic data for over 500k compounds520 https://www.materialsproject.org

MD17 data sets in this package range in size from 150k to nearly 1 M conformational geometries;
all trajectories are calculated at a temperature of 500 K and a resolution of 0.5 fs372

http://www.sgdml.org

MoleculeNet contains data on the properties of over 700k compounds521 http://moleculenet.ai
Open Catalyst
Project

1.2 M molecular relaxations with results from over 250 M DFT calculations relevant for
renewable energy storage522

https://opencatalystproject.org/index.html

OQMD consists of DFT predicted crystallographic parameters and formation energies for over
200k experimentally observed crystal structures523

http://oqmd.org

PubChemQC
PM6

provides 221 million molecular structures optimized with the PM6 method and several
electronic properties computed at the same level of theory524

http://pubchemqc.riken.jp/pm6_datasets.html

PubChemQC provides ∼3 million molecular structures optimized by DFT and excited states for over 2
million molecules using TD-DFT525

http://pubchemqc.riken.jp/

QM7-X comprehensive data set of 42 physicochemical properties for ∼4.2 M equilibrium and
nonequilibrium structures of small organic molecules with up to seven non-hydrogen (C,
N, O, S, Cl) atoms526

https://zenodo.org/record/4288677#.
X9jHNC2ZNTY

QM9 geometric, energetic, electronic, and thermodynamic properties for 134k stable small
organic molecules out of GDB-17527

https://figshare.com/collections/Quantum_
chemistry_structures_and_properties_of_134_
kilo_molecules/978904

Synthesis
Project

collection of aggregated synthesis parameters computed using the text contained within
over 640 000 journal articles528

www.synthesisproject.org

quantum-
machine.org

a repository of diverse data sets, including valence electron densities, chemical reactions,
solvated protein fragments, and molecular Hamiltonians

http://quantum-machine.org/datasets/
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4.3. CompChem Data

We have laid the general framework for CompChem+ML
studies, but this direction would not be complete without more
details about training data (i.e., garbage in, garbage out). We
now review the landscape of data sets in CompChem and how
they will likely evolve over time. The past decade has seen
continually increasing usefulness and availabilty of “big data”
from CompChem that include community-wide data reposi-
tories comprised of millions of atomistic structures along with
diverse physical and chemical properties.506−509 Such
repositories are becoming the norm, and it is more customary
for different users to deposit raw or processed simulation data
there for the benefit of the research community. This brings
the possibility of robust validation tests for ML models, but it
also necessitates approaches that are well-equipped to handle
large and complex data sets. Typical data sets may come from
diverse origins such as MD trajectories from ab initio
simulations, data sets of small molecules and molecular
conformers, or other training sets used for developing ML
and non-ML FFs for specific applications. As the data sets
grow, so do the scope of publications that involve ML as
shown in Figure 1.
4.3.1. Benchmark Data Sets. ML models must be

validated before they can be trusted for predictions.
Validations of descriptors or model trainings are performed
on benchmark data sets, and several popular ones are
summarized in Table 5. These allow ML models to be
compared on the same ground and provide large amounts of
data for robust training. Their availability to the public also
ensures that the data sets can evolve with time and be extended
as a part of community efforts.529

Among the entries in Table 5, the most often used one is the
QM9 set, which consists of approximately 134 000 of the
smallest organic molecules that contain up to 9 heavy atoms
(C, O, N, or F; excluding H) along with their CompChem-
computed molecular properties such as total energies, dipole
moments, HOMO−LUMO gaps, etc. Several ML studies have
already been published using this data set (see Figure 8, ref
496). A popular challenge associated with QM9 is to develop a
next-generation ML model that learns the electronic energies
of random assortments of organic molecules with higher
accuracy and less required training data than other existing
models. Doing so tests next generation molecular representa-
tions and training algorithms. Figure 8 illustrates how the
choice of architecture and descriptors can influence the
predictive performance and data efficiency of ML models
using different properties of the QM9 data set as examples.
The next significant advance will potentially be due to a
combination of supervised and unsupervised learning models.

4.3.2. Visualization of Data Sets. As the structural data
sets grow it becomes infeasible to manually identify hidden
patterns or curate the data. Data-driven and automated
frameworks for visualizing these data sets become increasingly
popular.530−533 Dimensionality reduction effectively translates
the high dimensional data (i.e., the xyz-coordinates for
molecules or materials in different atomic configurations)
into a low-dimensional space easily visualized on paper or a
computer screen. In this way, entries such as those in the QM9
set can be shown (see Figure 9). The KPCA maps in Figure 9
are based on the dimensionality reduction of the global SOAP
descriptors, which are constructed by combining all the atomic
SOAP descriptors using eq 30. Each dot represents a small

Figure 8. Learning curves of various properties contained in the QM9 database, reporting the predictive accuracy of various models as a function of
training set sizes. Each curve represents an individual model based on a different architecture and descriptor. Shown are learning curves for the
internal energy (U0), HOMO and LUMO energies (ϵHOMO, ϵLUMO), the HOMO−LUMO gap (Δϵ), the length of the dipole moment vector (μ),
the isotropic polarizability (α), the zero point vibrational energy (ZPVE), heat capacity (CV), and the highest fundamental vibrational frequency
(ω1). Reprinted with permission from ref 496. Copyright 2020 American Chemical Society.
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molecule in the QM9 set, and the maps, thus, illustrate the
similarity between the molecules, instead of the relations
between the carbon atomic environments in Figure 7. The
maps in Figure 9 are color-coded using different molecular
properties, such as the atomization energies, composition, and
optical properties, and these properties are strongly correlated
with the principal axes. These KPCA maps are, therefore, an
intuitive and condensed way to help navigate the QM9 set.
Similarly, ref 321 used SOAP-sketchmaps in conjunction with
quasi-chemical theory to visualize similarities in local solvation
structures and thus show an unsupervised learning procedure
to identify structures that significantly impact solvation
energies of small ions.
Generally speaking, these data-driven maps are generated by

processing the design matrix (or kernel matrix) associated with
a data set using dimensionality reduction techniques
introduced in section 3.2. A simple option is to use the
ASAP code,374 a Python-based command line tool, that
automates analysis and mapping. Figures 7 and 9 were
generated using ASAP using only two commands that are
displayed in the figure. Data sets can also be explored in an
intuitive manner using interactive visualizers534 that run in a
web browser and display 3D-structures corresponding to each
atomistic structure in the data set.
4.3.3. Text and Data Mining for Chemistry. Conven-

tional publications are an essential part of any CompChem
knowledge base, and ML is becoming useful at accelerating
information extraction from the scientific literature via text

mining.535−537 This topic was previously comprehensively
reviewed in the context of cheminformatics.538,539 Natural
language processing has already driven text-mining efforts for
materials science discovery538 and experimental synthesis
conditions of oxides.528,540 CompChem+ML can also amplify
existing efforts in chemometrics,541 the science of data-driven
extraction of chemical information.542 This area has also
branched into related disciplines of data mining for specific
classes of materials543 and catalysis informatics.544 These
approaches have great promise, especially for deriving
information and knowledge from data, but it remains
challenging to implement these in ways that achieve insight
(and true impact).
Some have shown paths forward for doing so. For example,

ML models can obtain knowledge from failed experimental
data more reliably than humans who are more susceptible to
survivor bias,545 and it can also be used to distill physical laws
and fundamental equations using experimental363 and
computational data.546 ML models can also be used to reliably
predict SMILES representations (a string-based representation
of molecular graphs) that allow encoded information to be
derived from low-resolution images found in the literature.547

ML models can interpret experimental X-ray absorption near
edge structure (XANES) data and predict real space
information about coordination environments.548 Likewise,
scanning tunneling microscopy (STM) data can be used to
classify structural and rotational states on surfaces,549 and
name indicators can be used to predict in tandem mass

Figure 9. KPCA maps of the QM9 database using a global SOAP kernel. The maps are color-coded according to atomization energy per atom (a),
composition (b), number of carbon atoms in the molecule (c), total number of atoms in the molecule (d), HOMO−LUMO gap ϵgap (e), HOMO
energies ϵHOMO (f), and the number of atoms in a ring (g). Examples of molecules along various “paths” in panel a are illustrated. Reprinted with
permission from ref 374. Copyright 2020 American Chemical Society.
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spectrometry (MS/MS) properties.550 In closing, we see
exciting opportunities for future applications that complement
data and text mining to chemometrics through chemical space.

4.4. Transforming Atomistic Modeling

We previously mentioned that ML can handle large data sets
and extract insights while circumventing the high cost of
quantum-mechanical calculations by statistical learning.
CompChem+ML also has great potential in developing
MLPs. Car and Parrinello proposed running MD using
electronic-structure methods in 1985.551 These are now
mainstream but also quite computationally demanding and
normally restricted to small system sizes (∼100 atoms) and
short simulation times (∼10−12 s). Alternatively, accurate
atomistic potentials introduced in section 2.2.6 have been
developed to allow Monte Carlo and MD simulations, but
sufficiently accurate potentials are sometimes not available.
MLPs have emerged as way to achieve as high accuracy as KS-
DFT or correlated wavefunction methods but with a fraction of
the cost. MLPs have been constructed for far-reaching systems
from small organic molecules to bulk condensed materials and
interfaces.433,552,553 Several of the coauthors of the current
review have also written separate review focused more
narrowly on this topic,554 and so, we only provide a brief
overview here.
Training an MLP to reproduce a system’s PES usually

requires generating diverse and high quality CompChem data
points that cover the relevant temperature and pressure
conditions, reaction pathways, polymorphs, defects, composi-
tions, etc.555−562 After data points comprised of atomic
configurations, system energies, and forces are obtained,
different methods for constructing MLPs employ either
different descriptors (see a list of examples in Table 4) or
different ML architectures to perform interpolations of the full
PES. Again, smoothness is an essential feature for any PES, so
special considerations are needed to avoid numerical noise that
would result in discontinuities.563,564 Kernel method-based
MLPs, such as GAP276,565 and sGDML,207,372,566 ensure
smoothness by relying on smoothly varying basis functions,
but the scaling of kernel-based methods with respect to the
number of training points is challenged without reduction
mechanisms.396,567 As a much more efficient but somewhat less
accurate alternative to GAP, SNAP568 uses the coefficients of
the SOAP descriptors and assumes a linear or quadratic
relation between energies and the SOAP bispectrum
components.569 The most popular MLPs are currently NN-
based due to their flexibility and capacity to train based on
large amounts data. Among these, ANI511,513 and
BPNN274,433,570 potentials use ACSF descriptors as inputs,
while Deep NNs, such as SchNet422,434,571 and DeepMD572

use the coordinates and nuclear charges of atoms. We now
focus on a few example applications.
4.4.1. Predicting Thermodynamic Properties. Many

CompChem efforts focus on predicting thermodynamic
properties at finite temperatures, such as heat capacity, density,
and chemical potential. Although many physical properties are
already accessible from MD simulations, doing estimations of
free energies that establish the relative stability of different
states using electronic structure methods remains difficult. The
configurational part of the Gibbs free energy of a bulk system
that has N distinguishable particles with atomic coordinates r =
{r1...N}, and the associated potential energy U(r) can be
expressed as
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integrated over all possible coordinates r, where kB is the
Boltzmann constant. In order to rigorously determine G, one
must exhaustively sample the configuration space that has
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normally requires thermodynamic integration or enhanced
sampling methods (e.g., umbrella sampling,573 metadynam-
ics,574 or transition path sampling575), that require simulation
times and scales far beyond what is accessible with MD
simulations based on KS-DFT or correlated wavefunction
methods.
However, MLPs have unleashed both limits on the time

scale and system size. An early example,576 used an MLP with
umbrella sampling573 and the free energy perturbation
method577 to reveal the influence of van der Waals corrections
on the thermodynamic properties of liquid water. Later, the
combination of an MLP trained from hybrid DFT data and
free energy methods reproduced several thermodynamic
properties of water from quantum mechanics, including the
density of ice and water, the difference in melting temperature
for normal and heavy water, and the stability of different forms
of ice.578,579 Ref 580 employed the DeepMD approach to
study the relatively long time-scale nucleation of gallium.
MLPs for high-pressure hydrogen provided evidence on how
hydrogen gradually turns into a metal in giant planets.581 In all
these examples, high accuracy and long time scales were
required to model the specific phenomena and reveal physical
insights, and it is precisely the combination of CompChem
+ML that enables both.

4.4.2. Nuclear Quantum Effects. As mentioned in
section 2.2.5, NQEs of chemical systems having light elements
bring challenges for atomistic modeling because the added
mobility of lighter atoms in dynamics simulations requires
higher computational cost to treat. To make the matter even
more complicated, many atomistic potentials (see section
2.2.6), particularly the ones for water or organic molecules,
cannot be used to model NQEs, because they often describe
colavent bonds as rigid and thus cannot describe the
fluctuations of the bond lengths and angles. As a remedy,
several studies have been performed by training an MLP using
higher rungs of KS-DFT (e.g., hybrid-DFT or meta-GGA) and
then using this potential in PIMD simulations.578,582−584 The
study of water mentioned in the previous section, which used
MLPs trained from hybrid DFT, revealed that NQEs were
critical for promoting the hexagonal packing of molecules
inside ice that ultimately lead to the 6-fold symmetry of
snowflakes.578 Highly data efficient ML potentials can even be
trained on reference data at the computationally very expensive
quantum-chemical CCSD(T) level of accuracy. For example,
the sGDML206,207,585 approach has been shown to faithfully
reproduce such FFs for small molecules, which were then used
to perform simulations with effectively fully quantized
electrons and nuclei.

4.5. ML for Structure Search, Sampling, and Generation

Locating stationary points on the PES is a frequent task in
CompChem, since these are needed for explaining reaction
kinetics. Explorations for stationary points normally require
many energy and force evaluations. ML approaches are being
implemented to dramatically accelerate minimum energy as
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well as saddle-point optimizations.293−295,565,586−588 Bernstein
et al. proposed an automated protocol that iteratively explores
structural space using a GAP potential.565 Bisbo and Hammer
employed an actively learned surrogate model of the PES to
perform local relaxations while only performing single-point
quantum-mechanical calculations for selected structures with
high values of acquisition.586 Work in refs 293 and 295−297
accelerated nudged elastic band (NEB) calculations by
incorporating a surrogate ML models.
ML can also dramatically accelerate the challenge of

efficiently sampling equilibrium or transition states by
accelerating enhanced sampling methods such as umbrella
sampling573 and metadynamics.574 These procedures make use
of collective variables (CVs) that define a reaction coordinate,
and computing the associated free energy surface (FES)
amounts to generating the marginal probability distribution in
these CVs. Unfortunately, the choice of the CVs is not always
clear for specific systems, and ML has shown some promise in
guiding their determination.589−591 Another direction is to
exploit that ML models can be considered as universal
approximators of FESs.592 For example, there are reports of
adaptive enhanced sampling methods using a Gaussian
Mixture model,593 using an NN architecture to represent the
FES594 or the bias function in variational sampling
simulations.595

ML methods also offer fundamentally new ways to explore
chemical compound and configuration space. Generative
models can learn the structural and elemental distribution
underlying chemical systems, and once trained, these models
can then be used to directly sample from this distribution. It is
furthermore possible to bias the generated structures toward
exhibiting desired properties, for example, drug activity or
thermal conductivity. As a consequence, generative models
offer exciting new avenues in drug and materials design.596,597

Generative methods in CompChem include recurrent neural
networks (RNNs), which can be used for the sequential
generation of molecules encoded as SMILES strings.598−600

Segler et al. demonstrated how such a recurrent model can first
learn general molecular motifs and then be fine-tuned to
sample molecules exhibiting activity against a variety of
medical targets.599 Autoencoders (AE) are another frequently
used ML method for molecular generation. AEs learn to
transform molecular graphs or SMILES into a low-dimensional
feature space and backward. The resulting feature vector
represents a smooth encoding of the molecular distribution
and can be used to effectively sample chemical space.601−606 By
applying a variational AE to the QM9 and ZINC databases,
Gomez-Bombarelli et al. could generate several optimized
functional compounds.607 An interesting extension to AEs are
conditional AEs, which not only capture the distribution of
molecular structures but also dependencies on various
properties.426,608 This makes it possible to directly generate
structures exhibiting certain property ranges or combinations
without the need for biasing or additional optimization steps.
AEs can also form the basis of another approach for exploring
chemical space called generative adversarial networks
(GANs).609,610 In a GAN, a generator model (often an AE)
attempts to create samples that closely match the underlying
data, while a discriminator tries to distinguish true from
generated samples. These architectures can be enhanced by
using RL objectives. RL learns an optimal sequence of actions
(e.g., placement of atoms) leading to a desired outcome (e.g.,
molecule with certain property). This makes it possible to

drive generative processes toward certain objectives, allowing
for the targeted generation of molecules with particular
properties.611−614 RL in general is a promising alternative
strategy for generative models,615,616 and they offer the
possibility for tight integration into drug design cycles.617

Alternative approaches combine autoregressive models with
graph convolution networks.618,619

While these methods use SMILES or graphs to encode
molecular structures, generative models have recently been
extended to operate on 3D coordinates of molecules and
materials.620,621 Gebauer et al. proposed an autoregressive
generative model based on the SchNet architecture, called g-
SchNet.622 Once trained on the QM9 data set, g-SchNet was
able to generate equilibrium structures without the need for
optimization procedures. It was further found, that the model
could be biased toward certain properties. In another
promising approach, Noe ́ et al. used an invertible NN based
on normalizing flows to learn the distribution of atomic
positions (e.g., sampled from an MD trajectory). This network
can then be used to directly sample molecular configurations
by sampling from this distribution without performing costly
simulations.298

4.6. Multiscale Modeling

Multiscale modeling is a term for including simulation or
information from different scales (see Figure 3). ML has been
introduced into QM/MM-like schemes that enable improved
multiscale simulations,300,325,623 and on the side of coarse-
graining.624 Different coarse-graining potentials have been
developed,625 but the inherent functional form for these
potentials relies on CPI as well as trial-and-error procedures.
Several works used ML for constructing coarse-grained
potentials by matching mean forces.449,450,626,627 In closing,
we see promise for incorporating experimental priors into ML
models, for instance, using experimental measurements to
improve an ML PES by complementing them with
experimental data. We are not aware of such efforts for
developing highly accurate MLPs beyond the atomic scale,
although much work has been done along this line to refine
FFs of RNAs and proteins, often incorporating methods from
ML, including the maximum entropy approach.628

5. SELECTED APPLICATIONS AND PATHS TOWARD
INSIGHTS

The central challenge posed at the beginning of this review was
how to identify and make chemical compounds or materials
having optimal properties for a given purpose. To do so would
help address critical and broad issues from pollution to global
warming to human diseases. Traditional developments are
often slow, expensive, and restricted by nontransferable
empirical optimizations, and so efforts have turned to
CompChem+ML to alleviate this.515,525,629,630

CompChem+ML are enabling searches through larger areas
of chemical space much faster than before.20,631−634 This
section is not to extensively review the large amount of work
using CompChem+ML in these different areas, but rather to
highlight examples of applications that have resulted in notable
insights so that others might use these notable works as
templates for future efforts.
5.1. Molecular and Material Design

Molecules and materials design is usually considered to be an
optimization problem.270,426,602,607,635 Thus, a comprehensive
understanding of chemical space is needed to identify
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compounds with desired properties that are subject to certain
required constraints (e.g., a specific thermal stability or a
suitable optical gap for absorbing sunlight). Those properties
will also depend on many key variables (e.g., constitutive
elements, crystal forms, geometrical and electronic character-
istics, among others), which make the property prediction
complex.531 CompChem calculations as explained in section 2
should provide a continuous description of properties across a
continuous representation (i.e., a descriptor or fingerprint) of
molecules that is used to map molecular configurations to
target properties, and vice versa. ML methods then can be
implemented to search large databases to extract structure−
property relationships for designing compounds with specific
characteristics.531,635−637 Optimizations would then be per-
formed on the structure-based function learned from training
configurations, and the composition of the chemical
compound would then be recovered back from the continuous
representation.
As a protoypical example of molecular design via high-

throughput screening, Gomez-Bombarelli et al.632 showed a
computation-driven search for novel thermally activated
delayed fluorescence organic light-emitting diode (OLED)
emitters. That work first filtered a search space of 1.6 million
molecules down to approximately 400 000 candidates using
ML to anticipate criteria for desirable OLEDs. For the purpose
of evaluating candidates, they estimated an upper bound on the
delayed fluorescence rate constant (kTADF). TD-DFT calcu-
lations were then used to provide refined predictions of specific
properties of thousands of promising novel OLED molecules
across the visible spectrum so that synthetic chemists, device
scientists, and industry partners would be able to choose the
most promising molecules for experimental validation and
implementation. Notably, this example of CompChem+ML
resulted in new devices that exhibited an external quantum
efficiency of over 22%. Figure 10 shows the high accuracy of
ML in predicting useful properties for high-throughput

screening of molecules and materials based on kTADF
calculations. This work exemplifies how ML can accelerate
the design of novel compounds in such a way that could not be
possible using traditional CompChem methods alone.
Integrations of features relevant to learning tasks allow one

to improve the accuracy of ML predictions for a given target
property. Park and Wolverton638 improved the performance of
the crystal graph convolution neural network (CGCNN)639 by
adding to the original framework information about the
Voronoi tessellated crystal structures, which are explicit 3-body
correlations of neighboring constituent atoms, and an
optimized representation of interatomic bonds. The new
approach that was labeled as iCGCNN achieved a predictive
accuracy 20% higher than that of the original CGCNN when
determining thermodynamic stabilities of compounds (i.e.,
predictions of hull distances). When used for high-throughput
searches, iCGCNN exhibited a success rate higher than an
undirected high-throughput search and higher than that of
CGCNN. Figure 11 shows the improvement in predictions of
nearly stable compounds after using more appropriate
descriptors. This study showcases how descriptors can be
tailored to further enhance the success of ML-aided high-
throughput screening.
5.2. Retrosynthetic Technologies

A grand challenge in chemistry is to understand synthetic
pathways to desired molecules.640,641 Retrosynthesis involves
the design of chemical steps to produce molecules and
materials that would be crucial to drug discovery, medicinal
chemistry, and materials science. As a different kind of
optimization problem, the general tactic is to analyze atomic
scale compounds recursively, map them onto synthetically
achievable building blocks, and then assemble those blocks
into the desired compound.642−644

Three main issues make retrosynthesis a formidable
intellectual challenge.645 First, simple combinatorics make
the space of possible reactions greater than the space of
possible molecules. Second, reactants seldom contain only one
reactive functional group, and thus require predictions of
multiple functional groups. Third, one failed step in the route
can invalidate the entire synthesis because organic synthesis is
a multistep process.
Given these challenges, ML is becoming more established in

determining reaction rules from CompChem data.641 Com-
puter-aided synthesis planning was actually first attempted in
the 1960s.646 Many have since attempted to formalize chemical
perception and synthetic thinking using computer pro-
grams.647−649 These programs are typically based on one of
three possible algorithms:649

1. Algorithms that use reaction rules (manually encoded or
automatically derived from databases).

2. Algorithms that use principles of physical chemistry
based on ab initio calculations to predict energy barriers.

3. Algorithms based on ML techniques.
ML approaches are used to try to overcome the general-

ization issues of rule-based algorithms (that normally suffer
from incompleteness, infeasible suggestions, and human bias)
while also avoiding the high cost of CompChem calculations.
It is now possible to obtain purely data-driven approaches for
synthesis planning, which are promoting a rapid advancement
in the field. For example, Coley and co-workers650 designed a
data-driven metric, SCScore, for describing a real synthesis
modeled after the idea that products are, on average, more

Figure 10. NN predictions compared to TD-DFT derived data of log
kTADF (R

2 = 0.94). ML models computed molecular properties needed
for screening with an accuracy comparable to CompChem
calculations, but at a fraction of the computational cost. Reprinted
by permission from Goḿez-Bombarelli, R.; Aguilera-Iparraguirre, J.;
Hirzel, T. D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.;
Chae, H. S.; Einzinger, M.; Ha, D. G.; Wu, T., et al. Design of
Efficient Molecular Organic Light-Emitting Diodes by a High-
Throughput Virtual Screening and Experimental Approach. Nat.
Mater. 2016, 15, 1120−1127.632 Copyright 2016 Springer Nature,
Nature Materials.
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synthetically complex than each of their reactants. The
definition of a metric for selecting the most promising
disconnections that produce easily synthesizable compounds
is crucial for avoiding combinatorial explosions. Figure 12
shows that a data-driven metric, the SCScore, is more suitable
than other heuristic metrics to perceive the complexity of each
step in a given synthesis. This work offered a valuable
contribution to the retrosynthesis working pipeline by
providing a method that implicitly learns what structures and
motifs are more prevalent as reactants.
Apart from isolated approaches or algorithms to deal with

specific tasks within retrosynthesis, there is already software
available to advance this field. One example is the Chematica
program,651 which has implemented a new module that
combines network theory, modern high-power computing, AI,
and expert chemical knowledge to design synthetic pathways.
A scoring function is used to promote synthetic brevity and
penalize any reactivity conflicts or nonselectivities, thus
allowing it to find solutions that might be hard for a human
to identify. Figure 13A shows the decision tree for one of the
almost 50 000 reaction rules used in Chematica. Reaction rules
can be considered as the allowed moves from which the
synthetic pathways are built, and such moves lead to an
enormous synthetic space (the number of possibilities within n
steps scales as 100n) as the one shown by the graph in Figure
13B. Chematica explores this large synthetic space by
truncating and reverting from unpromising connections and
drives its searches to the most efficient sequences of steps.
Moreover, in the pathways presented to the user, each
substance can be further analyzed with molecular mechanics
tools. This software was used to obtain insights into the
synthetic pathways to eight targets (seven bioactive substances
and one natural product). All of the computer-planned routes
were not only successfully carried out in the laboratory, but
they also resulted in improved yields and cost savings over
previous known paths. This work opened an avenue for
chemists to finally obtain reliable pathways from in silico
retrosynthesis. For further reading we recommend the two-part
reviews of Coley and co-workers.652,653

5.3. Catalysis

Catalysis research involves understanding how to impact
chemical product yields and selectivities.654 Traditional
catalysis is normally discussed in textbooks in terms of

homogeneous (i.e., within a solution phase), heterogeneous
(occurring at a solid/liquid interface), and biological
(occurring within enzymes and riboenzymes), but it is best
not to use these terms too strictly because actual reaction

Figure 11. DFT vs ML predicted hull distances of nearly stable compounds (hull distances smaller than 50 meV/atom) for CGCNN and
iCGCNN. The flexibility of ML approaches enable constructions of robust models tailored for specific target properties. See ref 638.

Figure 12. Use of different metrics to analyze the synthesis of a
precursor to lenvatinib. Only the SCScore, a data-driven metric,
correctly perceives a monotonic increase in complexity. ML models
can give insights into which compounds are either reactants or
products. Reprinted with permission from ref 647. Copyright 2018
American Chemical Society.
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mechanisms can be quite complex and overall processes may
sometimes exhibit characteristics of two or more of these
classical processes.655−657 Modern research in catalysis has
been interested in studying chemical reactivity and reaction
selectivity arising from stimuli from solar−thermal en-
ergy,658,659 electrochemical potentials,660 photons,661−664

plasmas,665,666 or other external resonances.667 Catalysis
makes up roughly 35% of the world’s gross domestic
product,668 and it is important to guide toward the end goal
of achieving greater sustainability with catalytic pro-
cesses.669−671

These reasons help make catalysis a fertile training ground
for applying and developing theoretical models (e.g., refs
672−674) that can be used along with CompChem or
CompChem+ML. The research field is also burgeoning with
many reports and review articles544,675−679 that discuss
perspectives and progress using ML methods for catalysis
science. Here, we will mention notable examples. For example,
CompChem+ML methods are enabling more data generation
by allowing costly CompChem calculations to be run more
efficiently, and more information means more comprehensive
predictions of chemical and materials phase diagrams for
catalysis680,681 as well as stability and reactivity descriptors

Figure 13. (A) Decision tree of one of the reaction rules within Chematica (double stereodifferentiating condensation of esters with aldehydes).
The different conditions in the tree specify the range of admissible and possible substituents or atom types. (B) Reaction rules are used to explore
the graph of synthetic possibilities (similar to the one shown here). Each node corresponds to a set of substrates. The combination of expert
chemical knowledge, CompChem calculations and ML enables finding synthesizable paths. See ref 651. Reprinted from Chem, 4(3), Klucznik, T.,
et al., Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory, 522−532, Copyright
(2018), with permission from Elsevier.
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identified on the fly.682−686 Figure 14 shows examples of the
palettes of insight available using state-of-the-art CompChem
+ML modeling for identifying activity and selectivity maps, as
well as visualizations of data using t-SNE.687

Regarding modeling of deeply complex chemical environ-
ments, Artrith and Kolpak developed MLPs for investigating
the relationships between solvent, surface composition and
morphology, surface electronic structure, and catalytic activity

Figure 14. CompChem+ML screening of hypothetical Cu and Cu-based catalyst sites. (a) Two-dimensional activity volcano plot for CO2
reduction. TOF, turnover frequency. (b) Two-dimensional selectivity volcano plot for CO2 reduction. CO and H adsorption energies in panels a
and b were calculated using DFT. Yellow data points are average adsorption energies of monometallics; green data points are average adsorption
energies of copper alloys; and magenta data points are average, low-coverage adsorption energies of Cu−Al surfaces. (c) t-SNE687 representation of
approximately 4000 adsorption sites on which DFT calculations were performed with Cu-containing alloys. The Cu−Al clusters are labeled
numerically. (d) Representative coordination sites for each of the clusters labeled in the t-SNE diagram. Each site archetype is labeled by the
stoichiometric balance of the surface, that is, Al-heavy, Cu-heavy or balanced, and the binding site of the surface. See ref 688. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature. Accelerated discovery of CO2 electrocatalysts using
active machine learning, Zhong, M., et al., Copyright 2020.

Figure 15. Estimated price (for one mmol in US dollars) of the catalysts in the selected range of −32.1/−23.0 kcal mol−1 (for ligand no. 72-90).
The price is calculated as a summation of the commercial price of transition metal precursors (one mmol) and one mmol of each ligand. The
cheapest complex for each metal is shown on the right. The estimated price of all the 557 catalysts is detailed in ref 694. Published by The Royal
Society of Chemistry.
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in systems composed of thousands of atoms interfaces.689 We
expect such simulations for electro- and photocatalysis
elucidation will continue to improve in size, scale, and
accuracy. For other physical insights, new approaches by
Kulik, Getman, and co-workers have also focused on
developing ML models appropriate for elucidating complex
d-orbital participation in homogeneous catalysis.690 Rappe and
co-workers have used regularized random forests to analyze
how local chemical pressure effects adsorbate states on surface
sites for the hydrogen evolution reaction.691 Almost trivially
simple ML approaches can be used in catalysis studies to
deduce insights into interaction trends between single metal
atoms and oxide supports,692 to identify the significance of
features (e.g., adsorbate type or coverage), where CompChem
theories break down,693 or they can be used to identify trends
that result in optimal catalysis across multiple objectives, such
as activity and cost (Figure 15).694

ML is also opening opportunities for CompChem+ML
studies on highly detailed and complex networks of
reactions.695−700 Such models in principle can then signifi-
cantly extend the range of utility of microkinetics modeling for
predictions of products from catalysis.701,702 ML also enables
studies of complicated reaction networks that can allow
predictions of regioselective products based on CompChem
data,703 asymmetric catalysis important for natural product

synthesis,704,705 and biochemical reactions.706 Efforts to better
understand “above-the-arrow” optimizations of reaction
conditions relate back to the challenge of retrosynthetic
challenges.707,708 Ideally, these efforts will continue while
making use of rapid advances in CompChem+ML that enable
predictive atomistic simulations to be run faster and more
accurately. We see reason for excitement for different
approaches, but we again stress the importance of ensuring
that models will provide unique and physical results (see
section 3 where we discuss the risk of “clever Hans”
predictors360).

5.4. Drug Design

The central objective for drug discovery is to find structurally
novel molecules with precise selectivity for a medicinal
function. This involves identifying new chemical entities and
obtaining structures with different physicochemical and
polypharmacological properties (i.e., combinations of benefi-
cial pharmacological effects or adverse side-effects).709,710 Drug
discovery involves the identification of targets (a property
optimization task, as in material design) and the determination
of compounds with good on-target effects and minimal off-
target effects.711 Traditionally, a drug discovery program may
take around six years before a drug candidate can be used in
clinical trials, and six or seven more years are required for three

Figure 16. (A) Workflow and timeline for the design of candidates employing GENTRL. (B) Representative examples of the initial 30,000
structures compared to the parent DDR1 kinase inhibitor. (C) Compounds found to have the highest inhibition activity against human DDR1
kinase. CompChem+ML methods can considerably accelerate the discovery of drugs that are effective against a desired target. See ref 617.
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Biotechnology. Deep learning enables
rapid identification of potent DDR1 kinase inhibitors, Zhavoronkov, A., et al., Copyright 2019.
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clinical phases. Thus, it is important to identify adverse effects
as soon as possible to minimize time and monetary costs.712

Accelerating drug discovery relies on predicting how and
where a certain drug binds to more than one protein, a
phenomenon that sometimes results in polypharmacology.
Researchers are developing ready-to-use tools aimed to
facilitate research for drug discovery,713 but CompChem+ML
is expected to continue providing even more benefits to the
drug development pipeline.714

In a recent study, Zhavoronkov et al.617 developed a deep
generative model for de novo small-molecule design: the
generative tensorial reinforcement learning (GENTRL) model
that was used to discover potent inhibitors of discoidin domain
receptor 1 (DDR1), a kinase target implicated in fibrosis and
other diseases. The drug discovery process was carried out in
only 46 days, beginning with the recollection of appropriate
data for training and finishing with the synthesis and
experimental test of some compounds (Figure 16A). GENTRL
was used to screen a total of 30 000 structures (some examples
compared to the parent DDR1 kinase inhibitor are shown in
Figure 16B) down to only 40 structures that were randomly
selected ensuring a coverage of the resulting chemical space
and distribution of root-mean squared deviation values. Six of
these molecules were then selected for experimental validation
(see Figure 16C), with one of them demonstrating favorable
pharmacokinetics in mice. The predicted conformation of the
successful compound according to pharmacophore modeling
was very similar to the one predicted to be preferred and stable
by CompChem methods. This work illustrates the utility of
CompChem+ML approaches to give insights into drug design
by rapidly giving compound candidates that are synthetically
feasible and active against a desired target.
Besides generating new chemical structures with favorable

pharmacokinetics, ML methods are also used in pharmaceut-
ical research and development for peptide design, compound
activity prediction and for assisting scoring protein−ligand
interaction (docking).709,715−717 An example of the latter was
proposed by Batra et al.718 for efficiently identifying ligands
that can potentially limit the host−virus interactions of SARS-
CoV-2. Those authors designed a high-throughput strategy
based on CompChem+ML that involved high-fidelity docking
studies to find candidates displaying high-binding affinities.
The ML model was used to search through thousands of

approved ligands by the Food and Drug Administration (FDA)
and a million biomolecules in the BindingDB database.514

From these, insights were obtained for more than 19 000
molecules satisfying the Vina score (i.e., an important
physicochemical measure of the therapeutic process of a
molecule that is used to rank molecular conformations and
predict free energy of binding). Figure 17 shows the Vina score
predictions that led to the selection of the best candidates,
some of which are also illustrated in the figure. The Vina scores
for the top ligands were further confirmed using expensive
docking approaches, resulting in the identification of 75 FDA-
approved and 100 other ligands potentially useful to treat
SARS-CoV-2. This study highlights a reasonable CompChem
+ML strategy for making useful suggestions to aid expert
biologists and medical professionals to focus in fewer
candidates when performing either robust CompChem efforts
or synthesis and trial experiments.

6. CONCLUSIONS AND OUTLOOK
Recent CompChem methods, algorithms, and codes have
empowered new studies for a wealth of physical and chemical
insights into molecules and materials. Today, the combination
of CompChem+ML can be equipped to address new and more
challenging questions in different domains of physics, materials
science, chemistry, biology, and medicine. Productive research
efforts in this direction necessitate interdisciplinary teams and
increasing availability of high-quality data across appropriate
regions of chemical compound space. Discovering new
chemicals and materials requires thorough investigations.
One needs to predict reaction pathways and interactions
between molecules, optimize environmental conditions for
catalytic reactions, enhance selectivities that eliminate
undesired side reactions or side effects, and navigate other
system-specific degrees of freedom. Addressing this complexity
calls for a statistical view on chemical design and discovery,
and CompChem+ML provides a natural synergy for obtaining
predictive insights to lead to wisdom and impact.
This Review provided a bird’s-eye view of CompChem and

ML and how they can be used together to make transformative
impacts in the chemical sciences. The successes of CompChem
+ML are particularly visible in physical chemistry and include
drastic acceleration of molecular and materials modeling,
discovery and prediction of chemicals with desired properties,

Figure 17. Vina scores predictions for the isolated protein (S-protein) and the protein-receptor complex (interface) for all the molecules in the
BindingDB data sets and some exemplary top cases that satisfy the screening criteria. ML models trained on accurate CompChem databases are of
upmost importance to efficiently gain insights into possible treatments, even for newly discovered diseases. Figure taken from ref 718. Copyright
2020 American Chemical Society.
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prediction of reaction pathways, and design of new catalysts
and drug candidates. Nevertheless, we have only begun to
scratch the surface of how successful applications of ML in
chemistry can bring impact. There are many conceptual,
theoretical, and practical challenges waiting to be solved to
enable further synergies within the troika of CompChem, ML,
and CPI. Here we enumerate some of the challenges that we
consider to be the most pressing and interesting at this
moment:

1. Reliance on ML in CompChem algorithms must be
increased: ML algorithms can be integrated into
CompChem algorithms at almost any simulation level
(Figure 3). ML algorithms are already available to
accelerate calculations of CompChem energies, navi-
gations along reaction pathways, and sampling of larger
regions of the PES, but the reluctance of their use
impedes progress. In general, these algorithms must be
made more effective, efficient, accessible, user-friendly,
and reproducible to benefit fundamental and applied
research (see for example, ref 719.).

2. More general ML approaches are needed: ML methods
must continue to evolve beyond now-common applica-
tions of learning a narrow region of a PES or identifying
straightforward structure/property relationships. New
ML methods should have the capacity to predict
energetic and electronic properties and their more
convoluted relationships across chemical space. Such
approaches should grow toward uniformly describing
compositional (chemical arrangement of atoms in a
molecule) and configurational (physical arrangement of
atoms in space) degrees of freedom on equal footing.
Further progress in this field requires developing new
universal ML models suitable for insights across diverse
systems and physicochemical properties.

3. ML representations must include the right physics: ML
methods that are claimed to be accurate but incorrectly
describe the true physics of a system will eventually fail
to achieve meaningful insights while lowering the
reputation of other work in the field. Current ML
representations (descriptors) can successfully describe
local chemical bonding, but few if any are treating long-
range electrostatics, polarization, and van der Waals
dispersion interactions that are critical for rationalizing
physical systems, both large and small. Combining
intermolecular interaction theory (a key focus of
advanced CompChem methods) with ML is an
important direction for future progress toward studying
complex molecular systems.

4. CompChem + ML applications need to strive toward
achieving realistic complexity: Investigations using highly
accurate CompChem methods normally require overly
simplified model systems while more realistic model
systems necessitate less accurate but computationally
efficient CompChem methods. This compromise should
no longer be necessary. We are due for a paradigm shift
in how thermodynamics, kinetics, and dynamics of
systems in complex chemical environments (e.g., for
multiscale biological processes like drug design and/or
catalytic processes at solid−liquid interfaces under
photochemical excitations, etc.) can be treated more
faithfully with less corner-cutting. An emerging idea is to
dispatch ML approaches into computationally efficient

model Hamiltonians for electronic interactions based on
correlated wavefunction, KS-DFT, tight-binding, molec-
ular orbital techniques, and/or the many-body dis-
persion method. ML can predict Hamiltonian parame-
ters and the quantum-mechanical observables would be
calculated via diagonalization of the corresponding
Hamiltonian. The challenge is to find an appropriate
balance between prediction accuracy and computational
efficiency to dramatically enhance larger scale simu-
lations.

5. Much more experimental data is needed: Validations of
ML predictions require extensive comparisons with
experimental observables such as reaction rates,
spectroscopic observations, solvation energies, and
melting temperatures. Such experiments may have
previously been considered too routine, too mundane,
or not insightful enough alone, but all high quality brings
great value for future CompChem+ML efforts that
tightly integrate quantum mechanics, statistical simu-
lations, and fast ML predictions, all within a
comprehensive molecular simulation framework.720

6. Much more comprehensive data sets need to be assembled
and curated: Current CompChem+ML efforts have
profited heavily by the availability of benchmark data
sets for relatively small molecules that allow a
comparison of existing models.413,527 While efforts
fixated on boosting prediction accuracies and shrinking
down requisite training set sizes for ML models have had
their merits, it is time to move on as further
improvements are meaningless if the ML models are
not making useful and insightful predictions themselves.
More useful predictions will require knowledge from
larger data sets, and these will inevitably contain
heterogeneous combinations of different levels of theory
or experiments that must be analyzed, “cleaned”, and
uncertainties adequately quantified for models to
productively learn. Such hybrid data sets may be the
key to arrive at novel hypotheses in chemistry that could
then be experimentally tested.

7. Bolder and deeper explorations of chemical space are
needed: So far most efforts to generate chemical data
have focused on exploring parts of chemical space for
new compounds for a targeted purpose. This should
change. Combining ML model uncertainty estimates
across broader swaths of chemical space could open
pathways for fruitful statistical explorations, say, in an
active learning framework. This could lead to discover-
ing new synergies between data that otherwise would
not have been possible to enable advances in scientific
understanding and improve ML models. Generative
models can bridge the gap between sampling and
targeted structure generation imposing optimal com-
pound properties, for example, for inverse chemical
design.125,621,622

This and other reviews20,554,634,720−724 have stated how ML
has become instrumental for recent progress in CompChem.
We would like to also mention inspirations that ML has drawn
from being applied to physical and chemical problems.
ML methods generally assume that data is subject to

measurement noise while CompChem data is generally
approximate but also noise-free from a statistical perspective.
ML modeling still requires regularization, but regularizers
should reflect the underlying physics of molecular and
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materials systems. ML models used in applications of vision
contain discrete convolution filters that are suboptimal for
chemical modeling, but recognition of this shortcoming has led
to novel continuous convolution filters that are well suited for
chemistry and have also become a popular novel architecture
for core ML methods.434

Furthermore, invariances, symmetries, and conservation laws
are key ingredients to physical and chemical systems.
Incorporating them into ML has led to novel and useful
models for chemistry since they can learn from significantly
less data, which then makes it possible to build force fields at
unprecedentedly high levels of theory.206,207,372 Using these
powerful ML techniques for computer vision, natural language
processing, and other applications is currently being explored.
Structural information from molecular graphs provide the basis
for novel tensor NNs or message passing architectures,352,421

as well as graph explanation methods.725

Many further challenges exist that have led or will lead to
mutual bidirectional cross-fertilization between ML and
chemistry. These interdisciplinary efforts also initiate progress
in respective application domains. The power of this path is
that solving a burning problem in chemistry with a novel
crafted ML model may also result in unforeseen insights in
how to better design core ML methods. Interestingly, the
exploratory usage of ML for knowledge discovery in chemistry
typically requires novel ML models and unforeseen scientific
innovations, and this can lead to interesting insight that is not
necessary limited to chemistry alone, rather it is likely to go
beyond.
To conclude, the past decade has shown that it has not been

enough to just apply existing ML algorithms, but break-
throughs are happening by a handshaking of innovations
resulting in novel ML algorithms and architectures driven by
the pursuit of novel insights in chemistry while retaining a deep
understanding about the underlying physical and chemical
principles. Research programs that foster interdisciplinary
exchange, such as IPAM (www.ipam.ucla.edu), have seeded
this progress, and these should be continued. Mixed teams
with members educated in different aspects of physics,
chemistry and ML have been instrumental. This also brings
the need to solve the new educational challenge of developing
new generations of researchers with an academic curriculum
that interweaves chemistry, physics and computer science to
enable a meaningful (multilingual) research contribution to
this exciting emerging field.
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ACE atomic cluster expansion
ACS American Chemical Society
ACSF atom-centered symmetry function
AE autoencoders
AI artificial intelligence
API application programming interfaces
BoB bag of bonds
BOP bond order potential
BP back-propagation
CGCNN crystal graph convolution neural network
CNN convolutional neural network
COSMO conductor-like screening model
C-PCM conductor polarizable continuum solvent

model
CASPT2 complete active space perturbation theory
CASSCF complete active space self-consistent field
CBS complete basis set
CI configuration interaction
CMD centroid molecular dynamics
CompChem computational chemistry
CPI chemical and physical intuition
CV collective variable
DDR1 discoidin domain receptor 1
DeepPot-SE smooth edition version of the DeepMD

potential
D-PCM dielectric polarizable continuum solvent model
DFT density-functional theory
DFTB density functional tight binding
DLPNO domain-based local pair natural orbital
DMRG density matrix renormalization group theory
DTNN deep tensor neural network
EAM embedded atom method
EANN embedded atom neural network
ECP effective core potential
FCHL Faber−Christensen−Huang−Lilienfeld
FCI full configuration interaction
FDA Food and Drug Administration
FES free energy surface
FF force field
FPS farthest point sampling
GAN generative adversarial network
GENTRL generative tensorial reinforcement learning
GGA generalized gradient approximation
GP Gaussian processes
GPU graphical processing units
GVB generalized valence bond
HEAT high accuracy extrapolated ab initio thermo-

chemistry
HF Hartree−Fock
HIP-NN hierarchical interacting particle neural network
ICA independent component analysis
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IEFPCM integral equation formulation of polarizable
continuum solvent model

KE kinetic energy
KPCA kernel principal component analysis
KRR kernel ridge regression
KS Kohn−Sham
LDA local density approximation
LJ Lennard-Jones
MBTR many-body tensor representation
MD molecular dynamics
MEAM modified embedded atom method
ML machine learning
MLP machine learning potential
MPNN message-passing neural network
MRCC multireference coupled cluster
MRCI multireference configuration interaction
MS/MS tandem mass spectroscopy
NDDO neglect of diatomic differential overlap
NEB nudged elastic band
NMR nuclear magnetic resonance
NN neural network
NQE nuclear quantum effect
OF orbital-free
OLED organic light-emitting diode
PCA principal component analysis
PCM polarizable continuum solvent model
PES potential energy surface
PIMD path integral molecular dynamics
QM quantum mechanics
QSAR/QSPR quantitative structure activity/property rela-

tionship
RE-Match regularized entropy match
RI resolution of the identity
RISM reference interaction site model
RL reinforcement learning
RMSD root mean squared displacement
RNN recurrent neural network
SCRF self-consistent reaction field
SOAP smooth overlap of atomic positions
STM scanning tunneling microscopy
SVM support vector machine
t-SNE t-distributed stochastic neighbor embedding
TD time-dependent
UMAP uniform manifold approximation and projec-

tion
XAI explainable artificial intelligence
XANES X-ray absorption near edge structure
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(297) Koistinen, O. P.; Ásgeirsson, V.; Vehtari, A.; Jónsson, H.
Nudged Elastic Band Calculations Accelerated With Gaussian Process
Regression Based on Inverse Interatomic Distances. J. Chem. Theory
Comput. 2019, 15, 6738−6751.
(298) Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann Generators:
Sampling Equilibrium States of Many-Body Systems With Deep
Learning. Science 2019, 365, No. eaaw1147.
(299) Christensen, A. S.; Faber, F. A.; von Lilienfeld, O. A.
Operators in Quantum Machine Learning: Response Properties in
Chemical Space. J. Chem. Phys. 2019, 150, 064105.
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(352) Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.;
Tkatchenko, A. Quantum-Chemical Insights From Deep Tensor
Neural Networks. Nat. Commun. 2017, 8, 13890.
(353) Bietti, A.; Mairal, J. On the Inductive Bias of Neural Tangent
Kernels. arXiv, 2019, 1905.12173. https://arxiv.org/abs/1905.12173
(354) Montavon, G.; Lapuschkin, S.; Binder, A.; Samek, W.; Müller,
K.-R. Explaining Nonlinear Classification Decisions With Deep Taylor
Decomposition. Pattern Recognit. 2017, 65, 211−222.
(355) Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., Müller,
K.-R., Eds. Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning; Lecture Notes in Computer Science; Springer: New
York, NY, 2019; Vol. 11700.
(356) Baehrens, D.; Schroeter, T.; Harmeling, S.; Kawanabe, M.;
Hansen, K.; Müller, K.-R. How to Explain Individual Classification
Decisions. J. Mach. Learn. Res. 2010, 11, 1803−1831.
(357) Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.-
R.; Samek, W. On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation. PLoS One 2015, 10,
No. e0130140.
(358) Montavon, G.; Samek, W.; Müller, K.-R. Methods for
Interpreting and Understanding Deep Neural Networks. Digit. Signal
Process. 2018, 73, 1−15.
(359) Holzinger, A. From Machine Learning to Explainable AI. 2018
World Symposium on Digital Intelligence for Systems and Machines
(DISA); 2018; pp 55−66.
(360) Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.;
Samek, W.; Müller, K.-R. Unmasking Clever Hans Predictors and
Assessing What Machines Really Learn. Nat. Commun. 2019, 10,
1096.
(361) Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C. J.;
Muller, K.-R. Explaining deep neural networks and beyond: A review
of methods and applications. Proc. IEEE 2021, 109, 247−278.
(362) Bongard, J.; Lipson, H. Automated Reverse Engineering of
Nonlinear Dynamical Systems. Proc. Natl. Acad. Sci. U. S. A. 2007,
104, 9943−9948.
(363) Schmidt, M.; Lipson, H. Distilling Free-Form Natural Laws
From Experimental Data. Science 2009, 324, 81−85.
(364) Brunton, S. L.; Proctor, J. L.; Kutz, J. N. Discovering
Governing Equations From Data by Sparse Identification of
Nonlinear Dynamical Systems. Proc. Natl. Acad. Sci. U. S. A. 2016,
113, 3932−3937.
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