

Guía de uso y acceso a material de apoyo para Analítica I

Elaborado: García González Jonathan Isaac – Ingeniero Químico – 319001471

Material realizado durante el Servicio Social para el proyecto de PAPIME PE201324

Tutores responsables: Dra. Águeda Elena Ceniceros

Dr. Luis Gerardo Martínez Jardines

Objetivo del material: El siguiente material se desarrolló para el apoyo de los alumnos al momento de cursar Analítica I, donde se muestra una aplicación ambiental del tema de los equilibrios ácido-base, así como el uso de una hoja de cálculo para el apoyo de cálculos en normalizaciones y titulaciones por retroceso para la obtención de datos de interés.

Agradecimientos

A la responsable PAPIME Dra. María Teresa de Jesús Rodríguez Salazar

Y Laboratorio Geoquímica Ambiental Aplicada del Instituto de Geología de la UNAM

Guía de uso de la hoja de cálculo.

El acceso al archivo y el video de guía se encontrara al final del documento.

Se recomienda descargar el archivo para que funcione de la forma correcta, ya que en la versión en línea puede presentar alguna falla.

Al abrir el archivo encontraremos en la primera hoja una portada.

Imágen 1. Portada de la hoja de cálculo

Posteriormente cambiaremos a la segunda hoja dando clic en la hoja con el título Nomenclatura de colores.

Imágen 2. Cambio de hoja

Nomenclatura de colores.- Al ingresar a la hoja se nos presenta la siguiente nomenclatura de colores, que nos indica que datos tenemos que poner en las celdas o bien que información tendremos en dichas celdas.

								/	Nomencl	atura de	colores	de celdas
Datos exp	erimentales	que debes	En dichas celdas deberás hacer registrode los datos que obtendras en el experimento, recuerda									
	registrar			verificar las unidades								
Datos qu	e debes inve	stigar para	En dichas ce	ldas debes re	egistrar datos	que deberás	investigar de	froma prev	ia al experime	ento y uso de		
рос	der ocupar la	hoja	esta hoja de cálculo									
Cálculos	o celdas con	fórmulas	En dich	as celdas se r	ealizarán los	cálculos requ	eridos o bien	se ocupara a	alguna formul	la para la		
	necesarias					obtenció	n de datos					
	Resultados		En dichas coldas so obtondras los resultados obtonidos									
	Resultatios											

Imágen 3. Nomenclatura de colores

Ahora cambiaremos a la siguiente hoja, donde podremos hacer los cálculos de normalización de las sustancias que ocuparemos en el experimento.

Portada	Nomenclatura de colores	Normalización	Titulación por retroceso	+

Al acceder a dicha hoja se nos pedirán varios datos, que deberemos registrar de forma previa al experimento y algunos obtenidos durante la fase experimental.

								Norma	alización d	e disoluc	iones						
									Condiciones exp	erimentales							
					Corre		- 4-1										
					Conci	entraciones te	eoricas	-									
					HCI		M	-									
					Naon		141										
	Reacció	in balanceada							Reacci	ón balanceada							
_								_									
		(
Batrón primario	<u>a.1)Normalizaci</u>	on de HCI						Batrón primario	<u>a.z) Normalizaci</u>	n de NaOH			 Recuerda antes de empezar, investigar los patrones prima 				
MM		g/mol						MM		g/mol			que ocu	oaras y que in	dicador es el	más adecuad	do. Pla
Indicador		8,						Indicador:		8,1101			cuales s	erán las reacc	iones y que e	stequeometr	:ría tie
Ensayo	masa de PP	V gastado, mL	[HCI]					Ensayo	masa de PP	V gastado, mL	[NaOH]						
1								1									
2								2									
3								3									
	Promedio								Promedio								
CV%						CV%											
	[HCI]		0.00	-					[NaOH]		0.00						

De forma previa es necesario investigar que patrón primario se ocupara, la masa molar del mismo, así como que indicador es el adecuado para observar el punto de equivalencia.

Reacción balanceada	Reacción balanceada	Registro de la equeción
$Na_2CO_3 + 2 HCI \rightarrow 2 NaCI + CO_2 + H_2O$	$KHC_8H_4O_4 + NaOH \rightarrow KNaC_8H_4O_4 + H_2O$	balanceada con el patrón primario
a.1)Normalización de HCl	a.1) Normalización de NaOH	
Patrón primario Na ₂ CO ₃	Patrón primario BifK	[]
MM 105.99 g/mol	MM 204.22 g/mol	Registro de información
Indicador Naranja de metilo	Indicador: FenoIftaleína	del patron primario y el indicador usado.

Imágen 6. Registro de datos previo al experimento.

Posteriormente haremos el registro de las concentraciones teóricas de nuestras sustancia, posteriormente se hará el registro de datos experimentales que serán el peso del patrón primario (PP) y el volumen gastado de nuestra sustancia para la normalización.

Ensayo	masa de PP	V gastado, mL		1	Ensayo	masa de PP	V gastado, mL
1	0.556	10.1	Registro de datos		1	0.2009	9.8
2	0.538	10	ensavo		2	0.2048	10
3	0.511	9.5	,	J	3	0.2017	9.5

Imágen 7. Registro de datos experimentales.

Ahora realizaremos los cálculos necesarios para conocer la concentración de nuestra sustancia.

Para el cálculo de nuestra concentración ocuparemos el siguiente cálculo.

En la hoja de cálculo se pondrá de la siguiente forma.

=((C20/\$C\$17)*2)/(D20/1000)

Imágen 8. Ecuación 1 escrita en excel.

	a.1)Normalización de HCl												
Patrón primario	Na ₂ CO ₃												
MM	105.99	g/mol											
Indicador	Naranja de metilo												
Ensayo	masa de PP	V gastado, mL	[HCI]										
1	0.556	10.1)20/1000)										
2	0.538	10	1.0152										
3	0.511	9.5	1.0150										

Imágen 9. Señalamiento de celdas ocupadas.

Posteriormente arrastraremos la formula a celdas de abajo y tendremos el cálculo de nuestras concentraciones.

El siguiente paso será obtener la concentración promedio, el coeficiente de variación y el resultado será igual al valor promedio, siempre y cuando nuestro porcentaje de variación sea igual o menor al 10% y buscando una preferencia a valores por debajo del 5%.

Promedio	1.0230	=PROMEDIO(E20:E22)
CV%	1.09%	=DESVEST.P(E20:E22)/E23
[HCI]	1.02	=E23
		-125

Imágen 10. Cálculos

Ahora haremos el último cambio de hoja, esto será a la hoja "Titulación por retroceso"

Portada	Nomenclatura de colores	Normalización	Titulación por retroceso	•

Imágen 11. Cambio de hoja.

En dicha hoja podremos calcular el porcentaje de CaCO3 presente en la muestra como el PN que se describe en la NOM-141-SEMARNAT-2003, pueden consultar a dicha norma a través del siguiente enlace

http://www.ordenjuridico.gob.mx/Federal/PE/APF/APC/SEMARNAT/Normas/Oficiales/NOM-141-SEMARNAT-2003.pdf

Imágen 12. Presentación de la hoja titulación por retroceso.

En la primera parte, podremos hacer el registro del nombre de nuestra muestra, el tratamiento que paso, que cantidad en g estamos ocupando, así como el volumen adiccionado de nuestra sustancia en exceso en este caso HCl, recuerda que debe estar en exceso para asegurarlo puedes realizar el cálculo buscando gastar un volumen determinado o bien como es este caso siguiendo las indicaciones de la norma.

1							
				Datos	exper	imentales	
Muestra	LC	GA-1278-24					
Tratamiento							
Cantidad a analizar (g)		2.00					
V de HCI adiccionado (mL)		6.50					

Imágen 13. Registro de datos.

En la siguiente sección se hará la curva potenciométrica por retroceso donde se identificara el punto de equivalencia por medio de la primera y segunda derivada, primero se hará el registro del volumen adiccionado como del cambio de pH.

V agregado de NaOH, mL	рН
0	2.04
0.2	2.06
0.4	2.09
0.5	2.1
0.7	2.11
0.9	2.13
1.1	2.14
1.3	2.15
1.5	2.15
1.7	2.16

Imágen 14. Ejemplo de llenado de datos.

Ahora aplicaremos los cálculos de la primera y segunda derivada, donde en la primera derivada veremos el cambio del pH respecto la adicción de nuestro titulante.

$$\frac{d (pH)}{d (V)} = \frac{(pH_2 - pH_1)}{(V_2 - V_1)}$$

Ecuación 2. Primera derivada.

Y la segunda.

$$\frac{d^2 (pH)}{d V^2} = \frac{\left(\frac{d (pH)}{d (V)} - \frac{d (pH)}{d (V)}\right)}{(V_2 - V_1)}$$

Ecuación 3. Segunda derivada.

En la hoja de cálculo se hará registrando las siguientes formulas y arrastrando hasta el último de nuestros datos, don esto buscamos en la primera derivada el máximo posible y en la segunda el cambio de nuestra pendiente, esto lo podremos realizar a través de fórmulas y por la visualización en gráficas.

V agregado de NaOH, mL	pН	$\frac{d (pH)}{d (V)}$	$\frac{d^2 (pH)}{d V^2}$
0	2.04		
0.2	2.06	0.10	
0.4	2.09	0.15	0.25
0.5	2.1	0.10	-0.50
0.7	2.11	0.05	-0.25
0.9	2.13	0.10	0.25
1.1	2.14	0.05	-0.25
1.3	2.15	0.05	0.00
1.5	2.15	0.00	-0.25
1.7	2.16	0.05	0.25
1.8	2.18	0.20	1.50
2	2.19	0.05	-0.75
2.2	2.22	0.15	0.50
2.4	2.23	0.05	-0.50
2.6	2.25	0.10	0.25
2.8	2.26	0.05	-0.25

La fórmula que registramos para la primera derivada será la siguiente:

=((C16-C15)/(\$B16-\$B15))

La fórmula que registramos para la primera derivada será la siguiente:

=((D17-D16)/(\$B17-\$B16))

Imágen 15. Cálculo de la primera y segunda derivada.

Con estos datos podremos hacer las siguientes gráficas, Gráfica 1 de Vol. Adiccionado vs pH, Gráfica 2 de Vol. Adiccionado vs primera derivada y Gráfica 3 de Vol. Adiccionado vs segunda derivada.

Para insertar un gráfico iremos a la pestaña de insertar y seleccionaremos grafico de dispersión.

X 🗄 🔚	2.6	* · · - Ŧ											
ARCHIVO	INICIO	INSE	RTAR	DISEÑO E)E PÁGINA	FÓR	MULAS	DATOS	REVISAR	VISTA	ACROBAT		
Tabla dinámica	Tablas dinámicas	Tabla	Imáger] nes Imágen en líne	es Formas	SmartArt	Captura	Aplicacione para Office	es Gráfico: * recomenda	s ados €	■ • ☆ • ▲ • ोi • ⊡ •	Gráfico dinámico ▼	
	Tablas			I	ustracione	s		Aplicacione	s	Gráf	ficos	Es.	
J18	T	: ×	~	f _x									
Imágen 1	6. Inserta	ır gráfic	:0.					E p	ste es el sí uede cambia	mbolo d ar segund	el gráfico lo la versió	que neces ວ່ກ que se us	itamos, más a.

Con esto tendremos un gráfico en blanco en el cual podremos ingresar los datos que necesitamos.

XI H 5	う → 							HERRAMIENTAS DE GRÁFICOS						
ARCHIVO	NICIO INSERTAI	R DISEÑO DE	PÁGINA F	ÓRMULAS	DATOS REVISA	AR VISTA	ACROE	BAT DISEÑO	D FORM	ATO	-			
Agregar eleme de gráfico - Diseños d	ento Diseño rápido v colo	biar res v			Final Contraction of the final sector of the f	de diseño				Cambiar entre S filas y columnas Datos	eleccionar datos			
District d	e graneo				Estilos	ac alsono				54(5)	ingo iostación			
Gráfico 6	▼ : ×	√ f _×	D	5			6							
1	D	C	U	L	, I		9		1		N O F			
2										litulación por retroc	ceso (
3														
4										Datos experimentales				
5										-				
6	Mue	stra		L	GA-1278-24									
7	Tratamiento								Dando cl	ic en el símbolo señalado				
8	Cantidad a	analizar (g)			2.00					un a al u a una u	a na siatuan la a data a			
9	V de HCI adici	cionado (mL)			6.50					podremo	os registrar los datos.			
10														
12										Curva potenciométrica por retr	00050			
12										carva potencionietnica por reti	oteso			
14	V agregado de NaOH, mL	pН	$\frac{d (pH)}{d (V)}$	$\frac{d^2(pH)}{dV^2}$						Genera las siguientes gráficas que n equivalencia de	os ayudaran a determinar el punto de I HCI con el NaOH			
15	0	2.04								Gráfica 1 de Vol.	Adiccionado vs pH			
16	0.2	2.06	0.10							Gráfica 2 de Vol. Adiccio	nado vs primera derivada			
17	0.4	2.09	0.15	0.25						Gráfica 3 de Vol. Adiccior	ado vs segunda derivada			
18	0.5	2.1	0.10	-0.50						<u>rll</u>				
19	0.7	2.11	0.05	-0.25						Grá	fica 1			
20	0.9	2.13	0.10	0.25										
21	1.1	2.14	0.05	-0.25						1.2				
22	1.5	2.15	0.05	-0.25						1				
24	1.5	2.15	0.00	0.25						0.8				
25	1.8	2.18	0.20	1.50										
26	2	2.19	0.05	-0.75					1	£ 0.6				
27	2.2	2.22	0.15	0.50			1		1	0.4				
28	2.4	2.23	0.05	-0.50						03				
29	2.6	2.25	0.10	0.25						0.2				
30	2.8	2.26	0.05	-0.25						•				
31	3	2.28	0.10	0.25						0 0.2 0.4	0.6 0.8 1 1.2			
32	3.2	2.3	0.10	0.00						Voi. ac	actionado en mu			
33	3.5	2.34	0.13	0.11										

Imágen 17. Selección de datos

Dando clic sobre el grafico en blanco se nos desplegaran dos pestañas de Herramientas de gráficos, la que nos interesa es la nombrada diseño, donde ubicaremos el icono de Seleccionar datos, al darle clic se nos desplegara el siguiente menú.

Seleccionar origen de datos	?	×
Rango de datos del gráfico:		:
Cambiar fila/columna		
Ent <u>radas de</u> leyenda (Series) Etiquetas del eje <u>h</u> orizontal (categoría)		
Agregar Modificar Quitar Editar		
Celdas ocultas y <u>v</u> acías Aceptar	Car	ncelar

Imágen 18. Selección de datos

En diseña ventana daremos clic sobre Agregar para poder seleccionar los datos de interés.

En el primer recuerdo pondremos el nombre del gráfico, en el segundo los valores de x, en el caso de los tres gráficos que haremos son los datos de volumen, en el tercero van los valores de y, para el primer grafico son los valores de pH, mientras que para los siguientes son los datos de la primera y segunda derivada según corresponda.

Imágen 19. Selección de datos para los gráficos.

Esto se repetirá para cada gráfico para obtener el punto de equivalencia, teniendo al final los siguientes gráficos. Recuerda agregar títulos a los ejes y las unidades en caso de ser necesario.

Imágen 20. Gráficos.

Con ayuda de las gráficas podemos sacar el punto de equivalencia, siendo de la primera donde este el valor **máximo** de la primera derivada y en la segunda donde se presenta el cambio en la pendiente. Para facilitarlo ocuparemos la siguiente función y verificaremos con la gráfica.

Punto de equivalencia								
Primera derivada	23.20							
Vol. Equivalencia	6.4	mL						

Imágen 21. Datos de equivalencia

Pondremos la siguiente función seleccionando los datos de la columna de la primera derivada

=MAX(D16:D68)

Con esto tendremos el volumen de equivalencia y podremos pasar a los cálculos, donde lo primero será poner los datos de las concentraciones de nuestras sustancias, así como el peso molecular de nuestra sustancia a determinar, en este ejemplo es el CaCO3.

Información										
Normalización										
HCI	1.022983166	М								
NaOH	0.101543399	М								
CaCO ₃	100.09	g/mol								

Imágen 22. Datos de concentraciones.

Ahora pasaremos a realizar los cálculos necesarios para obtener el porcentaje de CaCO3 en la muestra y finalmente el PN de nuestra muestra según la NOM-141-SEMANART-2003.

Cálculos												
Cálculos												
moles iniciales H+		moles		1. Determine la cantidad mol iniciales de ácido clorhídrico								
moles en exceso H+		moles		2. Determine la cantidad mol final de ácido clorhídrico								
moles que reaccionaron con CaCO ₃		moles		3. Determine la cantidad mol de ácido clorhídrico que reaccionó con el CaCO3 de la muestra analizada								
moles de CaCO3	moles 4. Determine los moles de CaCO ₃											
%CaCO3				5. Determine el % de CaCO3 en a muestra analizada								
PN		kg CaCO3/ton jal										

Imágen 23.Cálculos necesarios.

La fórmula que se ocupa para el cálculo del PN está en la NOM y es la siguiente.

Ecuación 3. Cálculo de PN en kg de CaCO3/ton jal

Links de acceso.

 Carpeta de archivos: <u>https://drive.google.com/drive/folders/1EmJXq127FBfAM8_jdTGIMB5mvcY0B562?usp=sh</u> <u>aring</u>

En esta carpeta encontraras los vídeos de la presentación sobre equilibrios ácido-base, el vídeo guía de la hoja de cálculo, en la carpeta nombrada videos y en la carpeta nombrada documentos estarán este documento, la presentación y la hoja de cálculo.

Muchas gracias por ocupar este material y espero te ayude a comprender de mejor manera el tema de equilibrios acido-base.