Tutorial uso del material realizado por el proyecto PAPIME PE201324.

Introducción:

El material desarrollado para el proyecto PAPIME PE201324, titulado "Apoyo a la titulación y formación terminal desde la investigación formativa y docencia en química analítica", fue elaborado por Angel López Ríos, estudiante de la carrera de Química Farmacéutica Biológica con número de cuenta 318187763, como parte de su servicio social en curso bajo la asesoria de la Dra. Agueda Elena Ceniceros Gómez.

El objetivo de este material es servir como apoyo didáctico y audiovisual para las asignaturas "Análisis de Medicamentos" (clave 1705) y "Aseguramiento de la Calidad" (clave 1806) de la carrera de Química Farmacéutica Biológica, así como para la asignatura "Analítica Experimental III" (clave 1802) de la carrera de Química.

Tutorial del material:

El primer componente del material es un tríptico que tiene como objetivo responder las dudas más generales sobre la validación de métodos analíticos, incluyendo qué es, por qué es importante y cuáles son los principales campos de aplicación, además de su relación con el control de calidad. Este tríptico presenta información sintetizada y concreta, diseñada para servir como una guía introductoria para los estudiantes.

[https://drive.google.com/file/d/13R3DrXFtTDIMKZxxbB8zMBU6pRWLZPpp/vi ew?usp=drive_link]

El segundo componente es un material audiovisual que incluye un video y un ejercicio aplicado relacionado con la validación de un método analítico. El video profundiza en los temas abordados en el tríptico, proporcionando información más detallada y permitiendo a los estudiantes verlo las veces que sea necesario para comprender los conceptos. Este recurso también ayuda a diferenciar y poner en práctica conocimientos fundamentales de la química analítica, como la linealidad, precisión y exactitud.

[https://drive.google.com/file/d/1Qrhx4dZHbKEJwLoiJDhJBxY8QpV3tKV4/vie w?usp=drive_link]

Finalmente, se incluye un ejercicio práctico en Excel diseñado para consolidar el aprendizaje adquirido a través del video. Este ejercicio permite a los estudiantes utilizar herramientas de Excel, como la generación de gráficos de curvas de calibración, el análisis de regresiones lineales y la interpretación de datos mediante gráficos. Esto refuerza los temas abordados en las materias mencionadas y proporciona una experiencia práctica en la validación de métodos analíticos, incluyendo el seguimiento de normativas aplicables cuando sea necesario.

En el archivo "Ejercicio proyecto PAPIME PE201324" se presenta el ejercicio interactivo y resolución del mismo presentado en el video, a manera de que quede totalmente explicado y sea más comprensivo para el estudiante en caso de que hubiese dudas al observarlo o interpretarlo en el video.

"Hojadecalculoresuelta[https://docs.google.com/spreadsheets/d/1xUdVUhVDs9QSKF4QrD5_Q-n5WCx_kY2r/edit?usp=drive_link&ouid=102048943555827325182&rtpof=true&sd=true

Hoja de calculo sin resolver

[https://docs.google.com/spreadsheets/d/14A7xC3cgUKTxY0g4yOJwyTnxSF El8SpH/edit?usp=drive_link&ouid=102048943555827325182&rtpof=true&sd=t rue]

En la primer hoja que lleva por título "Índice" se menciona que es lo que contiene el material presentado, al igual que quien lo realizó y que es lo que se espera lograr con dicho material.

En la hoja que se titula "Linealidad" se presenta la explicación al término linealidad, junto con qué valores deben respetarse para que cumpla con lo establecido en la NOM-177-SSA1-2013, ya que el ejercicio consta en la valoración de un método analítico de acuerdo lo descrito en la norma.

Para ello, se requiere primeramente construir una curva de calibración. Seleccionando **Concentración** y **Absorbancia** y dando clic en **Insertar** y **graficos de dispersión**, se adjuntará el gráfico de la curva.

Tabla Tablas	Archivo	Inicio	Insertar [Disposición de página	Fórmulas	Datos R	evisar V	lista	Ayuda	Q	¿Qué desea hacer
E 5 × e × s 20 A B C D E Purbuja 3 LINEALIDAD E Más gráficos de dispersión 4 Image: Second Se	Tabla dinámica ~	Tablas din recomen Tablas	ámicas Tabla dadas	Imágenes Formas	SmartArt	Gráficos recomenda	dos ∕∕ G <u>ráf</u>	llı ~ Ì ⊡ ~ Disp <u>er</u>	Grá dinán	fico nico >	Lin. as Colum
C17 : A B C D E A B C D Image: Control of the second seco	⊟ •5 °							·			4
A B C D E Ministry 1 2 3 LINEALIDAD Servicia Servicia 3 LINEALIDAD Servicia Servicia Servicia 4 Servicia Servicia Servicia Servicia 5 La linealidad se define como la capacidad de un metodo analítico para asegurar o muestra. Este parámetro de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de acuerdo ac	C17			<i>f</i> × 20				•••	<u>6 •</u>		
1 2 3 LINEALIDAD 4		A	В	C	D		E				
2 3 LINEALIDAD	1							Surbu	 ja		
3 LINEALIDAD Más gráficos de dispersión 4	2										_
4 Măs grăficos de dispersión 5 La linealidad se define como la capacidad de un método analítico para asegurar o muestra. Este parámetro de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 e acuerdo a la NOM-177-SSA1-2013 e acuerdo a la NOM-177-SSA1-2013 e acuerdo acuerdo a la NOM-177-SSA1-2015 mm 12 Conc. CURVA Factor de respuesta 13 Conc. CURVA Factor de respuesta 14 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 ŷ 0.4121 19 100 0.3045 0.003 Sxy= 450.4100 20 0.003 0.024 0.0024	3			LIN	EALIDA	D		••			
5 La linealidad se define como la capacidad de un método analitico para asegurar muestra. Este parámetro de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante acuerdo a la NOM-177-SSA1-2013 se evalúa mediante criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante acuerdo acuerdo a la NOM-177-SSA1-2013 se evalúa mediante curva está determinado por una concentración de Ácido Acetil Salicílico d 11 9 Recuerda que el intervalo de la curva de calibración dependen de la guía de validaci curva está determinado por una concentración de Ácido Acetil Salicílico d 11 12 Conc. CURVA Abs.(λ-265 nm) Factor de respuesta 13 Conc. CURVA Abs.(λ-265 nm) Factor de respuesta 14 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 Sy2= 1.4292 200 200 0.6335 0.003 Sy/x= 0.0024 19 100 0.3045 0.003	4							м	ás gráficos	de di	spersión
6 muestra. Este parámetro de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante 7 criterios de aceptación de acuerdo a la NOM-177-SSA1-2013 se evalúa mediante 8 recuerda que el intervalo de la curva de calibración dependen de la guía de validaci 10 curva está determinado por una concentración de Ácido Acetil Salicílico d 11 12 12 Conc. 14 Conc. 15 Conc. 16 (μg/mL) 17 20 20 0.0490 18 40 19 100 100 0.3045 20 0.033 20 0.033 20 0.033 20 0.033 20 0.033 20 0.033 20 0.033 20 0.033 20 0.033 21 300	5		La line	alidad se defin	e como la ca	apacidad o	de un me	etodo	analitic	о р	ara asegurar (
7 criterios de aceptación de acu 8 9 Recuerda que el intervalo de la curva de calibración dependen de la guía de validada curva está determinado por una concentración de Ácido Acetil Salicílico d 10 curva está determinado por una concentración de Ácido Acetil Salicílico d 11 Conc. CURVA Factor de respuesta 13 Conc. CURVA Factor de respuesta 16 Conc. CURVA Factor de respuesta 17 20 0.00490 0.002 S y= 2.0605 18 40 0.1145 0.003 Sys= 1.4292 20 0.003 Sys= 450.4100 21 300 0.003 Sys/s= 0.0024	6		muestra.	Este parámetro	de acuerdo	a la NOM	I-177-SS	SA1-2	2013 se	eva	alúa mediante
8 9 Recuerda que el intervalo de la curva de calibración dependen de la guía de validad curva está determinado por una concentración de Ácido Acetil Salicílico d 11 12 13 14 15 Conc. CURVA Factor de respuesta 14 15 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 ŷ 0.4121 19 100 0.3045 0.003 Syz= 1.4292 20 0.6335 0.003 Syz= 1.4292 20 0.6335 0.003 Syz= 1.4292 20 0.6335 0.003 Syz= 1.4292 20 0.03045 0.003 Syz= 1.4292 20 0.0335 0.003 Syz= 0.024	7							criter	ios de a	сер	tación de acu
9 Recuerda que el intervalo de la curva de calibración dependen de la guía de validad curva está determinado por una concentración de Ácido Acetil Salicílico d 11 curva está determinado por una concentración de Ácido Acetil Salicílico d 12 curva está determinado por una concentración de Ácido Acetil Salicílico d 13 curva está determinado por una concentración de Ácido Acetil Salicílico d 14 curva está determinado por una concentración de Ácido Acetil Salicílico d 15 Conc. CURVA 16 (µg/mL) Abs.(λ=265 nm) respuesta 17 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 ŷ 0.4121 19 100 0.3045 0.003 Syz= 1.4292 20 200 0.6335 0.003 Syz= 450.4100 21 300 0.9590 0.003 Sy/x= 0.024	8										
Curva está determinado por una concentración de Acido Acetil Salicílico d Curva está determinado por una concentración de Acido Acetil Salicílico d Curva está determinado por una concentración de Acido Acetil Salicílico d Curva está determinado por una concentración de Acido Acetil Salicílico d Conc. CURVA Factor de respuesta Conc. CURVA Factor de respuesta 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 ŷ 0.4121 19 100 0.3045 0.003 Syz= 1.4292 20 0.6335 0.003 Syz= 0.024 21 300 0.9590 0.003 Sy/x= 0.0024	9		Recuerda	que el interval	o de la curv	a de calibi	ración d	epend	den de l	a gi	uía de validaci
11 11 12 14 14 14 14 14 15 Conc. CURVA Abs.(λ=265 nm) Factor de respuesta 17 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 ŷ 0.4121 19 100 0.3045 0.003 Sy2= 1.4292 20 200 0.6335 0.003 Sxy= 450.4100 21 300 0.9590 0.003 Sy/x= 0.0024	10			curva está det	erminado po	or una cor	ncentrac	ión d	e Acido	Ace	etil Salicílico d
12 13 14 14 14 15 Conc. CURVA (μg/mL) Factor de respuesta -	11										
IS	12										
Conc. CURVA (µg/mL) Factor de Abs.(λ=265 nm) Factor de respuesta 17 20 0.0490 0.002 S y= 2.0605 18 40 0.1145 0.003 ý 0.4121 19 100 0.3045 0.003 Sy= 1.4292 20 200 0.6335 0.003 Sxy= 450.4100 21 300 0.9590 0.003 Sy/x= 0.0024	13										
16 $(\mu g/mL)$ $Abs.(\lambda=265 \text{ nm})$ $respuesta$ 17200.04900.002S y=2.060518400.11450.003 \hat{y} 0.4121191000.30450.003Sy2=1.4292202000.63350.003Sxy=450.4100213000.95900.003Sy/x=0.0024	15			Conc	CURY	V۵	Factor	de			
17200.04900.002S y=2.060518400.11450.003 \hat{y} 0.4121191000.30450.003Sy2=1.4292202000.63350.003Sxy=450.4100213000.95900.003Sy/x=0.0024	16			(ug/mL)	Abs.(λ=20	65 nm)	respue	sta			
18 40 0.1145 0.003 ŷ 0.4121 19 100 0.3045 0.003 Sy2= 1.4292 20 200 0.6335 0.003 Sxy= 450.4100 21 300 0.9590 0.003 Sy/x= 0.0024	17			20	0.049	90	0.002	2	S	V=	2.0605
19 100 0.3045 0.003 Sy2= 1.4292 20 200 0.6335 0.003 Sxy= 450.4100 21 300 0.9590 0.003 Sy/x= 0.0024	18			40	0.114	45	0.003	3		ŷ	0.4121
20 0.6335 0.003 Sxy= 450.4100 21 300 0.9590 0.003 Sy/x= 0.0024	19			100	0.304	45	0.003	3	S	/2=	1.4292
21 300 0.9590 0.003 Sy/x= 0.0024	20			200	0.633	35	0.003	3	S	xy=	450.4100
	21			300	0.959	90	0.003	3	Sy	/x=	0.0024

Ahora, teniendo el gráfico, se puede evaluar el valor de r^2 . Al dar **clic en el gráfico**, posteriormente a la **cruz verde** se abrira un menú. Al dar clic en **línea de tendencia** y en **más opciones**, se marca **"Presentar ecuación del gráfico y presentar valor de r²".**

Si lo prefieres, se puede también evaluar mediante la fórmula "COEFICIENTE.R2" al escribirla en la parte superior y seleccionar el conocido y (absorbancias) y conocido x (concentraciones).

COCIENTE 🝷 🗄	× 🗸 .	fx =COEFICIE	ENTE.R2(D17:D21,C17:C21)	
A	В	С	D	
7				
8				
9	Recuerda q	ue el interva	lo de la curva de calik	oración
10	c	urva está del	terminado por una co	ncentr
11				
12				
13				
14				
15		Conc.	CURVA	Fact
4.0				
16		(µg/mL)	Abs.(A=205 nm)	resp
16		(μg/mL) 20	0.0490	resp 0.(
16 17 18		(µg/mL) 20 40	Abs.(A=265 nm) 0.0490 0.1145	resp 0.(0.(
16 17 18 19		(μg/mL) 20 40 100	Abs.(A=205 nm) 0.0490 0.1145 0.3045	resp 0.0 0.0 0.0
16 17 18 19 20		(µg/mL) 20 40 100 200	Abs.(A=205 nm) 0.0490 0.1145 0.3045 0.6335	resp 0.0 0.0 0.0 0.0 0.0
16 17 18 19 20 21		(μg/mL) 20 40 100 200 300	Abs.(A=265 nm) 0.0490 0.1145 0.3045 0.6335 0.9590	resp 0.(0.(0.(0.(0.(0.(0.(0.(
16 17 18 19 20 21 22		(μg/mL) 20 40 100 200 300	Abs.(A=265 nm) 0.0490 0.1145 0.3045 0.6335 0.9590	resp 0.(0.(0.(0.(0.(0.(0.(0.(
16 17 18 19 20 21 22 23	b=	(μg/mL) 20 40 100 200 300 -0.01705	Abs.(A=265 nm) 0.0490 0.1145 0.3045 0.6335 0.9590	resp 0.(0.(0.(0.(0.(0.(0.(
16 17 18 19 20 21 22 23 24	b= m=	(μg/mL) 20 40 100 200 300 -0.01705 0.00325	Abs.(A=265 nm) 0.0490 0.1145 0.3045 0.6335 0.9590	resp 0.(0.(0.(0.(0.(0.(
16 17 18 19 20 21 22 23 24 25	b= 	(μg/mL) 20 40 100 200 300 -0.01705 0.00325 0.99999	Abs.(A=265 nm) 0.0490 0.1145 0.3045 0.6335 0.9590	resp 0.(0.(0.(0.(0.(0.(
16 17 18 19 20 21 22 23 24 25 26	b= 	(μg/mL) 20 40 100 200 300 -0.01705 0.00325 0.99999 C17:C21)	Abs.(A=265 nm) 0.0490 0.1145 0.3045 0.6335 0.9590 >0.999	resp 0.(0.(0.(0.(0.(0.(0.(

Por último, para evaluar el EER, se requiere el uso de las formulas:

Error relativo debido a la regresión % =
$$\frac{Sy_{/X}}{\overline{v}} * 100$$

En donde:

$$S_{y/x} = \sqrt{\frac{\sum y^2 - (pendiente * \sum yx) - (ordenada * \sum y)}{n-2}}$$

 $S_{y_{x}} = Desviación estándar (error estpandar) de la regresión$ $\bar{y} = promedio de la respuesta$ x = concentración y = respuestan - 2 = grados de libertad

Para ello, se puede sacar el valor de la pendiente y de la ordenada mediante formulas como "PENDIENTE" e "INTERSECCION.EJE" colocando así como en la

formula de "COEFICIENTE.R2" al conocido y (absorbancias) y conocido x (concentraciones).

Para lo demás, es requerido sacar el promedio de los valores de absorbancia (valores de y) empleando la formula "**PROMEDIO**" y seleccionando los valores.

Por último, para los valores que contiene el símbolo \sum , es requerido hacer la sumatoria de lo que se indica.

- Para ∑y² se requiere primeramente elevar al cuadrado todos los valores de absorbancia y posteriormente sumarlos.
- Para ∑yx se requiere multiplicar cada valor de "x" con su correspondiente valor de "y" y posteriormente sumarlos.
- Para $\sum y$ se requiere solamente sumar los valores de absorbancia.

Con todo ello, solamente se sustituyen los valores correspondientes para dar con el valor de **EER en porcentaje**.

хv	fx =621/618	*100				
		200				
В	С	D	E	F	G	Н
			crite	erios de acep	tación de ac	uerdo a la norm
Recuerda q	ue el interval	lo de la curva de calib	oración deper	nden de la gi	uía de validad	ión que se siga
c	urva está det	erminado por una co	ncentración	de Ácido Ace	etil Salicílico d	definida. Los re
	Conc.	CURVA	Factor de			
	(µg/mL)	Abs.(λ=265 nm)	respuesta			
	20	0.0490	0.002	S y=	2.0605	
	40	0.1145	0.003	ŷ	0.4121	
	100	0.3045	0.003	Sy2=	1.4292	
	200	0.6335	0.003	Sxy=	450.4100	
	300	0.9590	0.003	Sy/x=	0.0024	
				ERR=	=G21/G18*1	<2%
b=	-0.01705					

Por último, debajo se encuentra una interpretación de los datos obtenidos.

En la hoja que se titula "Precisión" se aborda el término de precisión y como este se puede evaluar a partir de otros dos conceptos como lo es la repetibilidad y la reproducibilidad. A su vez, en el se explica cómo es que se realiza el análisis visual mediante el gráfico de residuales.

Para ello, se requiere tener al menos una serie de curvas de calibración. Posterior a ello, se colocan de manera vertical las curvas y se realiza el mismo gráfico para observar las curvas así como se describió para la hoja de "Linealidad".

Archivo Inici	io Inserta	r Disposiciór	n de página	Fórmulas	Datos R	evisar Vista	Ayuda	Diseño de gráfio	co Formato	Q;Q	ué desea hacer?		
Tabla Tabla dinámica ~ recc Ta	is dinámicas omendadas iblas	Tabla Imáge	enes Formas	i SmartArt Captura ∽ :s	Gráficos recomenda	بالم ح من علي من من من من من من من من Gráf Dis	r in a Gr din s persión	ráfico mico ~	Columnas Pérdic ganar linigráficos	das y Seg	gmentación Escala de de datos tiempo Filtros	Vínculo Vínculos	Cuadro Enc de texto pie
⊟∽∼ಿ						·.	· 15	t NA					
Gráfico 2 🔻		√ f _x				<u>.</u>							
						1						м	N
10	D	40	0 1145	-			<u> </u>		0.1200	N	L	IVI	IN
20		100	0.3045	-	10	0 Bu	rbuja		0.1200	-			
21		200	0.5045	-	200				0.6280	-			
22		300	0.9590		300				0.9810				
23			0.0000						0.0010				
24				9		48	<u>M</u> ás gráfico	s de dispersión	-0	. /			o
25		Conc.	CURVA					Curva	s de calibrac	ión			
26		(µg/mL)	Abs.(λ=265 nr	n)	1.2000								
27		20	0.0490										
28		40	0.1145		1.0000								
29		100	0.3045										
30		200	0.6335		0.8000								
31		300	0.9590		<u>.0000.0</u>								
32		20	0.0500		anc								
33		40	0.1120	¢	-0.6000								þ
34		100	0.3100		Abs								
35		200	0.6360		0.4000								
36		300	0.9740					•					
37		20	0.0470		0.2000								
38		40	0.1200	_		•							
39		100	0.2990	_	0.0000	•							
40		200	0.6280	_		0	50	100	150	200	250	300	350
41		300	0.9810						Concentración (µ	ug/mL)			_
42				0					0				
43													
44													
45			Internets	-lán Como				a success of sec			-1	diference at a	and the last
40			interpreta	cion: Como	puedes ob	servar en la g	franca de la	as cruvas, al pe	recer no se lo	gra notar	si existe una gran	diferencia	entre los
	Índice	Linealidad	Precisión	Precisión gra	ifico residua	ales Exactit	ud Res	ultados en conjur	nto 🕀				

Dado que el gráfico no nos permite observar si hay valores fuera de tendencia dado la cercanía de los datos o la escala del gráfico, es necesario realizar un análisis por el **gráfico de residuales**.

Para realizar el gráfico de residuales los pasos son:

- Seleccionar los datos de concentración y absorbancia.
- En la parte superior, seleccionar "datos".
- En la parte superior derecha seleccionar "analisis de datos" y en el menú que se despliega, seleccionar "regresión".

r	Disposiciór	n de página F	órmula Dato:	s Revisar	Vista	Ayuda 🖓	¿Qué desea ł	nacer?						~			
100 F	Mostrar consu Desde una tabl Fuentes recien	ltas la tes	Co. viones Propiedades Coitar vínculo	Actuali todo	Tie Consu Consu El Propie zar	ltas y conexiones dades os de libro	⁵ 2↓ <mark>∡</mark> ∡↓ Orde	AZ enar Filtro	🕵 Borrar Væ Volver a aplicar Væ Avanzadas	Texto en columnas	₩ • @• ~	Análisis hipótesi	de Previsión	현물 Agrupar 👻 호텔 Desagrupar 문편 Subtotal		F Análisis de d	atos
er y	transformar		Conexiones		Consultas &co	onexiones		Ordenar y	filtrar	Herramie	ntas de datos	Pr	evisión	Esquema	ا د ا	Análisis	
	√ fx	20															
I	С	D	E								м				Q		s
	300	0.9590		300	0.9740		300	0.9810									
	Conc.	CURVA			Análisis de da	tos				? ×							
	(µg/mL)	Abs.(2=265 nm)	:	1.2000	<u>F</u> unciones pa	ra análisis				Aceptar							
	20	0.0490			Suavización	exponencial				N							
	40	0.1145	:	1.0000	Análisis de F	a varianzas de do ourier	os muestras			Cancelar							
	100	0.3045			Histograma					Ay <u>u</u> da							
	200	0.6335		0.8000	Generación	de núme, os aleat	orios										
	300	0.9590	<u></u>		Jerarquía y p Regresión	ercentil											
4	20	0.0500	pan	0 6000	Muestra												
	40	0.1120	sor		Prueba e par	a medias de dos	muestras emp	arejadas		*							
-	100	0.3100	Ab														
-	200	0.6360	· ·	J.4000													
-	300	0.9740				•											
-	20	0.0470		0.2000													
-	40	0.1200			•												
-	200	0.2990		0.0000	•												
-	200	0.0200		0	50	100		150	200	250	300	350					
+	300	0.3010					C	oncentración (ug/mL)								

Una vez en el menú, se selecciona la valores de y de entrada (valores de absorbancia), los valores de x de entrada (valores de concentración), se marcan las casillas "nivel de confianza 95%", "Residuos" y "gráfico de residuales". Finalmente, se da clic en aceptar.

En la hoja titulada "Precisión gráfico de residuales" se muestra la hoja generada de los anteriores pasos. En ella se puede observar el gráfico de los residuales y la distribución de los valores de la curva de calibración a su respectiva concentración. Por último, se encuentra una interpretación del gráfico de residuales y la tendencia que siguen los datos.

En la hoja titulada "Exactitud" se define el termino exactitud y como este parámetro es evaluado de acuerdo a la NOM-177-SSA1-2013.

Para el ejercicio se tienen valores reales de concentración y valores nominales de concentración de la curva de calibración que se ha empleado a lo largo de los ejercicios. Para evaluar el porcentaje de recobro o de diferencia, se sigue la siguiente ecuación:

%Dif absoluta = $\left| \frac{Concentración nominal - Concentración experimental}{Concentración nominal} \right| * 100$

Siendo la concentración nominal la concentración "ideal" y la concentración experimental la que se obtiene a partir de la fabricación de la disolución a la concentración esperada (o ideal).

✓ f _x =((F14-E14)/F14)	*100*-1	
с	D	E	F
itud se define c	omo el grado	o de concordancia e	ntre el valor
etro de acuerdo ste caso, al real ación real de cao	a la NOM-1 para izar una curv da punto de l	77-SSA1-2013 eval este parámetro es o a de calibración la r la curva y con ello, r	úa calculand que el porcer nayoría de la realizar el cal
	r	ecobro) mediante la	fórmula des
	r	ecobro) mediante la	fórmula des Conc.
	%Dif	ecobro) mediante la Conc. Recuperada	fórmula des Conc. (μg/mL)
	%Dif 14)/F14)*100	Conc. Recuperada	fórmula deso Conc. (μg/mL) 20
	%Dif 14)/F14)*100 1.625	Conc. Recuperada	fórmula dese Conc. (μg/mL) 20 40
	%Dif 14)/F14)*100 1.625 1.67	Conc. Recuperada 20.08 40.65 101.67	<u>fórmula des</u> Conc. (µg/mL) 20 40 100
	%Dif 14)/F14)*100 1.625 1.67 2.62	Conc. Recuperada 20.08 40.65 101.67 194.76	formula des Conc. (μg/mL) 20 40 100 200
	%Dif 14)/F14)*100 1.625 1.67 2.62 0.95	Conc. Recuperada 20.08 40.65 101.67 194.76 302.85	formula des Conc. (μg/mL) 20 40 100 200 300
Promedio	%Dif 14)/F14)*100 1.625 1.67 2.62 0.95 1.453	Conc. Recuperada 20.08 40.65 101.67 194.76 302.85	formula des Conc. (μg/mL) 20 40 100 200 300
Promedio	%Dif 14)/F14)*100 1.625 1.67 2.62 0.95 1.453 <3%	Conc. Recuperada 20.08 40.65 101.67 194.76 302.85	formula des Conc. (μg/mL) 20 40 100 200 300

Una vez realizado el porcentaje de recobro o de diferencia con cada uno de los puntos de la curva, se realiza el promedio con la función "**PROMEDIO**".

Por último, se encuentra una interpretación al resultado obtenido con respecto a la norma.

Finalmente, en la hoja titulada "Resultados en conjunto" se encuentra un resumen de todos los valores que se obtuvieron a lo largo del ejercicio, el parámetro a cumplir y si cumple o no con lo establecido por el parámetro. A su vez, en caso de no cumplir, se describe qué es lo que se debe hacer y la importancia de corregir aquellos puntos y su relación con el control de calidad.

Agradecimiento

Agradecemos a la responsable del proyecto la Dra. María Teresa de Jesús Rodríguez Salazar.