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1.0 Predicción de las reacciones redox: 
 
 a)  Escalas con base a información termodinámica electroquímica: E°. 
 
       Una medida de la fuerza relativa de los pares redox: Ox + ne-  =  Red,  la constituye la medición de la 
diferencia de potencial entre dos conductores de platino-patinado sumergidos en sendas disoluciones en condiciones 
estándar:  
 
    
             celda   
                            electroquímica 
 
 
 
 
 
 
 
 
 
 
 
        Semicelda de análisis: 
    COx = 1 M = CRed             Semicelda de referencia: 
                         pH = 0         Electrodo Normal de Hidrógeno: ENH. 
               HCl 1 M, H2­ p = 1 atm. 
 
 La diferencia de potencial medida es:  DE =(E°Ox/Red- E°ENH).  Con fines prácticos al electrodo de referencia, 
ENH, se le asigna un valor relativo de E°ENH = 0.0V, por lo tanto la lectura de diferencia de potencial medida se le 
atribuye al par Ox/Red y se reporta como el potencial normal estándar de dicho par redox. Es interesente comentar 
que el valor de E°ENH con respecto a la escala abosoluta de potencial es igual a 4.4V. 
 
 Se han reportado infinidad de tablas de potenciales normales redox ya que son una medida de la fuerza 
relativa entre oxidantes y reductores y son útiles para predecir la reactividad entre ellos. Se comparan los valores de 
E° por medio de escalas de reactividad. 
 
 Si se tienen dos pares redox diferentes:  Ox1 + n1e- = Red1  y  Ox2 + n2e-= Red2 cada uno con sus 
respectivos valores de E° con respecto al ENH, se puede establecer su fuerza relativa en una escala de potencial: 
 
 
                               oxidantes fuertes    
 
     Ox1             Ox2 
 
      E°1                E°2     E(V/ENH) 
     Red1               Red2 

      reductores fuertes 
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  La reacción redox en solución: 
 
  Si se mezclan  Ox2 con Red1 ocurre una reacción de intercambio de electrones entre estos pares 
redox conjugados que estará muy desplazada hacia los productos toda vez que Ox2 es un oxidante más fuerte que Ox1 
y el Red1 es un reductor mas fuerte que Red2 ya que  E°2 > E°1.  Dicha reactividad se representa de la siguiente 
manera: 
 
                               oxidantes fuertes    
 
     Ox1             Ox2 
 
      E°1                E°2     E(V/ENH) 
     Red1              Red2 

      reductores fuertes 
 
 
 La reacción que ocurre, una vez balanceandas las semireacciones redox, es la siguiente: 
 
     n1(Ox2   +    n2e-     =     Red2) 
     n2(Red1  -    n1e-     =       Ox1) 
                                                        ___________________________ 
 
           n1Ox2  +  n2Red1  =  n1Red2   +   n2Ox1 

 
 De acuerdo a la predicción cualitativa hecha con la escala de reactividad,  esta reacción esta desplazada 
preferentemente hacia los productos. 
 
 La expresión de la constante de equilibrio aparente (i.e. en función de concentraciones molares efectivas) de  
la reacción anterior es: 

      

 
 
 b)  Escalas con base a información termodinámica química: pKdisociación. 
 
  Otra medida de la fuerza relativa de los pares redox la constituye la constante de disociación del 
donador de electrones (reductor) de acuerdo al equilibrio de disociación siguiente: 
 

 

 
 La fuerza relativa de los oxidantes y reductores se compara en términos del parámetro adimensional  
pe = -log [e-], de manera análoga al parámetro adimensional usado en química ácido-base, pH = -log [H+].  
 
 Hay que hacer notar que a diferencia de los iones H+ solvatados en agua, los electrones solvatados tienen 
concentraciones muy bajas dada su alta reactividad en dicho disolvente lo cual no impide su definición en los 
equilibrios químicos redox en disolución acuosa.  
 
 Al igual que el pH,  es posible determinar el pe experimentalmente con amortiguadores adecuados.  
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 La expresión adimensional de la Kd queda de la siguiente manera: 
 

 

 
 En condiciones estándar [Ox] = 1M = [Red]: 
 

 

 
 Cada vez más se reportan tablas de pKd de pares redox junto con sus respectivos valores de E°. A semejanza 
de la predicción de reacciones ácido-base con escalas de pH, los valores de pKd/n son útiles para establecer la fuerza 
relativa de los oxidantes y reductores. 
 
 Si se tienen dos pares redox diferentes:  Red1 = Ox1 + n1e-   y  Red2 = Ox2 + n2e- cada uno con sus 
respectivos valores de pKd, se puede establecer su fuerza relativa en una escala de pe: 
 
 
                 reductores fuertes 
 
     Red1             Red2 
 
               pKd1/n1           pKd2/n2   pe 
     Ox1               Ox2 

                 oxidantes fuertes    
 
 
 Si se mezclan  Ox2 con Red1 ocurre una reacción de intercambio de electrones entre estos pares redox que 
estará muy desplazada hacia los productos ya que Ox2 es un oxidante más fuerte que Ox1 y el Red1 es un reductor 
mas fuerte que Red2 toda vez que  pKd2/n2 > pKd1/n1.   
 
 
 La reacción redox: 
 
 Como puede observarse las conclusiones sobre la fuerza relativa de los pares redox son las mismas que las 
obtenidas con la escala electroquímica de potencial. La reactividad entre Ox2 y Red1 se representa de la siguiente 
manera con una escala de pe: 
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                 reductores fuertes 
 
     Red1             Red2 
 
               pKd1/n1           pKd2/n2   pe 
     Ox1               Ox2 

                 oxidantes fuertes    
 
 Una vez más puede observarse que las conclusiones sobre la reactividad de los pares redox son las mismas 
que las obtenidas con la escala electroquímica de potencial. La reacción, y su Keq, que ocurre una vez balanceando 
las semireacciones redox es la siguiente: 
 
    n1Ox2  +  n2Red1  =  n1Red2   +   n2Ox1 
 
 De acuerdo a la escala de reactividad esta reacción esta desplazada preferentemente hacia los productos. 
 

 

 
2.0 Cálculo de la Kreacción  redox. 
 
 a) Con el modelo termodinámico electroquímico.  
 
 La ecuación que establece la relación entre el potencial de un electrodo y las concentraciones de las especies 
redox en solución se conoce como la ecuación de Nernst-Peters.   
 
 Para un par redox  Ox + ne-  = Red: 
 

 
 

 
 
 Donde:  R = constante universal de los gases    8.3 JK-1mol-1 
   T = temperatura [K] 
   n = número de mol de electrones 
   F = constante de Faraday  [96500 Cmol-1] 
 
 
 En condiciones estándar, T = 25°C, y transformando el logaritmo natural a logaritmo base 10: 
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 Esta ecuación permite el cálculo de la Keq de la reacción entre oxidantes y reductores. 
 
 El cálculo de la constante de reacción entre Ox2 y Red1: 
 

n1Ox2  +  n2Red1  =  n1Red2   +   n2Ox1 
 

 

se realiza de acuerdo a los siguientes pasos: 

 
 1)  Al equilibrio la disolución alcanza un potencial Eeq igual al potencial de electrodo relacionado con 
las ecuaciones de Nernst-Peters de cada par redox por lo que es válido igualarlas: 
 

 

 
 2) Se multiplica por (n1/n1) el lado izquierdo y por (n2/n2) el lado derecho de la igualdad anterior: 
 

 

 
 3) Se separan los cocientes de (n1/n1) y (n2/n2) para tener coeficientes iguales y las concentraciones 
elevadas a sendos coeficientes estequiométricos como en la Keq de la reacción: 
 

 

 
 4) Se agrupan los valores de E° de un lado de la ecuación y los términos logarítmicos del otro lado con 
el coeficiente común: 
 

 

 
 5) Se factoriza el coeficiente del término logarítmico: 
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6) Se invierte el cociente del término del logaritmo negativo: 
 

 

 
 7) Se aplica la regla logarítmica “log a+ log b = log (ab)”: 
 

 

 
 8) Se despeja el término logarítmico: 
 

 

 
 9) Se identifica la expresión de Kreacción: 
 

 

 
 10) Finalmente se expresa el valor de Kreacción en forma exponencial: 
 

 
 

 De la expresión anterior se corrobora que Kreacción>> 1 toda vez  que  E°2 > E°1 y por tanto la diferencia es 
positiva: (E°2 - E°1) > 1. 
 
 
 b) Con el modelo termodinámico químico.  
 
 El cálculo de la K de reacción entre Ox2 y Red1 por medio de los valores de Kdisociación y Kformación  de cada par 
conjugado se realiza aplicando la Ley de Hess que nos garantiza que los equilibrios químicos son aditivos y sus 
respectivas constantes de equilibrio multiplicativas. 
 
 1)  Se balancean sendas semireacciones y las K de equilibrio correspondientes se elevan a sendos 
exponentes utilizados para el balanceo: 
 
     n1(Ox2   +    n2e-     =     Red2) K = (Kf2)n1 

     n2(Red1  -    n1e-     =       Ox1) K = (Kd1)n2 
 

 2) Se suman las semireacciones y se multiplican las constantes de las semirreacciones ya balanceadas: 
 
    n1(Ox2   +    n2e-     =     Red2) K = (Kf2)n1 

    n2(Red1  -    n1e-     =       Ox1) K = (Kd1)n2 
                                      __________________________________________ 
            n1Ox2  +  n2Red1  =  n1Red2   +   n2Ox1     Kreacción = (Kd1)n2(Kf2)n1 
 
  
 Con estos dos pasos queda calculada la constante de reacción redox. 
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3.0 Relación entre la información termodinámica química y electroquímica: E° y pKd. 
 
 Si bien en la actualidad es posible encontrar en la literatura docente tablas de pKd redox , todavía las tablas 
con valores de E° siguen predominando. 
 
 Para un par redox  Ox + ne-  =  Red es posible comparar la ecuación de Nernst con el pKd en forma 
adimensional. 
 
 La forma adimensional de la Kd del par redox es: 

 

 

 
 La forma adimensional de la ecuación de Nernst-Peters es: 
 

 

 
 
 Si se comparan ya adimensionalmente: 

 

 

 
 

 Se concluye que la relación entre pe,  E, pKd y E° es la siguiente: 
 

 

 
 De esta manera si se conoce el valor de E° de tablas es posible calcular el correspondiente valor del pKd 
de disociación del equilibrio  Red  =   Ox   +    ne-. 
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4.0 Ejemplo de aplicación. 
 
 El Fe(II) es un reactivo muy usado en Análisis Químico desde que Karl Friederich Mohr introdujo, junto con 
otros reactivos, su uso en volumetría redox en 1830 (Charles M. Beck, Contactos 3(1994)14, UAM-I). Desde 
entonces las valoraciones volumétricas de Fe(II) en estándares y muestras variadas se aplican en control analítico 
farmacéutico, análisis de alimentos, análisis de aguas, análisis metalúrgico, análisis ambiental, etc. 
 
 La reacción operativa de titulación es muy cuantitativa si se efectúa en medio ácido sulfúrico a pH = 0. En 
este medio se conoce la siguiente información: 
 
 Fe(SO4)2-    + 1e-  +  H+   =  FeSO4  +  HSO4-   E° = 0.65V 
 Cr2O72-  +  6e-  +  12H+  + 2HSO4-  =  2CrSO4+  + 7H2O  E° = 1.35V 
 
 Calcular la Kreacción.  de reacción en medio sulfúrico controlado a) con la información termodinámica 
electroquímica proporcionada y b) con la información termodinámica química correspondiente.  
 
 a) Con la información termodinámica electroquímica: 
 
  Predicción de la reacción: 
 
  Dado que la concentración de H+ y HSO4- son 1 moL/L  y amortiguadas, se representan las 
semireacciones de la siguiente manera: 
 
  Fe(III)    + 1e-   =  Fe(II)      E° = 0.65V 
  Cr2O72-  +  6e-  +  12H+    =  2Cr(III)  + 7H2O  E° = 1.35V 
  
 
 En una escala de potenciales redox: 
 
                                
 
     Fe(III)             Cr2O7

2- 

 
      0.65V                1.35V     E(V/ENH) 
     Fe(II)            Cr(III) 
       
 
 La suma de semirreacciones balanceadas lleva a la reacción operativa de titulación: 
 
 6(Fe(II)   =     Fe(III)+ 1e-) 
 Cr2O72-  +  6e-  +  12H+    =  2Cr(III)  + 7H2O  
 _____________________________________________ 
 
 6Fe(II) + Cr2O72- +  12H+   =  6Fe(III)  +   2Cr(III)  + 7H2O  
 
Con una constante de equilibrio de reacción igual a: 
 

 

 En la siguiente secuencia de ecuaciones se muestran los pasos algebraicos para el cálculo de Kreacción con las 
ecuaciones de Nernst-Peters respectivas: 
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b) Con la información termodinámica química: 
 
  Primero es necesario transformar los valores de E° a valores de pKd redox: 
 

 
 
 
 
 

 
 Predicción de la reacción: 
 
 En una escala de pe se colocan sendos pares redox en el valor de (pKd/n) respectivo: 
 
               
 
     Fe(II)             Cr(III) 
 
     10.8              22.5      pe 
               Fe(III)           Cr2O7

2-
 

       
 
 
  
  
 Para calcular la Keq es necesario simplemente sumar las semirreacciones balanceadas y multiplicar sendas 
Kd o Kf: 
 
                            6(Fe(II)  =   Fe(III)  + 1e-)   K = (Kd )6= (10-10.8)6 = 10-64.8 
   
  Cr2O72-  +  6e-  +  12H+    =  2Cr(III)  + 7H2O  K = Kf = 10135 

                             __________________________________________________________________ 

 

       6Fe(II) + Cr2O72-  + 12H+    = 6 Fe(III)  + 2Cr(III)  + 7H2O  Kreacción = 1070.2 
 
 
es decir: 
 

 

 
 
 El valor encontrado coincide con aquel calculado con las ecuaciones de Nernst-Peters. 
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