LA DIFUSIÓN Y CONVECCIÓN BINARIA EN GASES
EN UNA CELDA DE DIFUSIÓN-CONVECCIÓN




1.- PROBLEMA

Hacer que se muestren experimentalmente la difusión y también la convección de los vapores de etanol en aire utilizando como medio de contraste humos de incienso y el control manual de la abertura de la válvula que hace pasar aire ambiental por el borde superior de la celda mostrada en la Figura 1.
· Para la difusión: Reportar el flux molar difusivo NAz en gmol de ETOH / min cm2 a los 15 minutos de operación y el perfil de las fracciones molares de los vapores de ETOH en AIRE por difusión unimolecular desde la interfase al borde superior de la celda también al finalizar los 15 minutos de operación. 
· Para la convección: Utilizar el modelo de la película para reportar la rapidez inicial de vaporización por convección visto como un flux molar NAz en gmol de ETOH / min cm2 de los vapores de etanol en aire al finalizar los 15 minutos de operación.

Condiciones de operación de este experimento:
· La celda tiene 1.12 cm de diámetro interno. 
· Se trabaja con etanol Q.P. a 2 cm abajo del borde de la celda.
· A una temperatura constante de 50°C y una presión de 586 mm Hg que es la presión atmosférica promedio en el laboratorio. 
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Figura 1. La celda de difusión-convección con doble pared de vidrio por donde pasa agua a 50°C y con etanol líquido hasta 2 cm del borde superior de la celda.
2. PARTE EXPERIEMNTAL

2.1 Conectar todos los componentes de este equipo de acuerdo con la Figura 2. y recircular agua a 50°C por la doble pared de la celda y alimentar etanol líquido hasta llegar a 2 cm abajo del borde superior.
NO accionar el botón de la bomba que proporciona el flujo de aire hasta que la celda de difusión esté llena de humos de incienso. El incienso es el medio que permite ver cuando se logra la difusión o la convección.
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Figura 2.  Elementos del equipo para lograr que se manifieste 
la difusión o la convección.




2.2 Producción de humos de incienso para que se pueda observar la difusión del etanol en aire.

Después encender un trozo de incienso, colocarlo en el embudo de vidrio como se muestra en la Figura 3 utilizando el mismo soporte universal donde se encuentra colocada la celda de difusión para llenar de humos el espacio de 2 cm. Una vez que la celda esté llena de humo, retirar el embudo y colocarlo en un vaso Erlenmeyer.

Para encender el trozo de incienso seguir los siguientes pasos:
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Figura 3.  Alimentación de humos a la celda de difusión


A continuación, asegurarse que la válvula (la pinza de Hoffman o de Mohor) que controla el flujo de aire que circula por el borde superior de la celda esté cerrada y ubicada como lo muestran las Figura 4. 

[image: ]
Figura (4). Observar la ubicación de la pinza de Hoffman para alimentar 
la corriente de aire a la celda y lograr que se manifieste la difusión

Medir la distancia de la salida del distribuidor de aire al centro de la celda para que esté aproximadamente a 15 cm, consultar la Figura 5.


[image: ]
Figura (5). Con una regla de plástico separar la salida del distribuidor de aire y el centro de celda aproximadamente a 15 centímetros para ambos experimentos, el de difusión y el de convección.


Después, abrir LENTAMENTE la pinza de Hoffman para hacer pasar corrientes de aire sobre el borde superior de la celda que contiene humos, se sugiere abrirla observando la celda para que se mantenga una capa estancada de vapores de etanol en aire, como se muestra en la Figura 6.
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Descripción generada automáticamente]

Figura 6. Los humos de incienso sin remolinos indica la presencia del mecanismo por difusión. 
A continuación, retirar los humos de la celda y observar mediante el telescopio del altímetro como el etanol se ha expandido dentro de la celda (ya no está a 2 cm) por lo que es necesario retirar el etanol líquido en exceso con una jeringa para que coincidan la cruz que tiene la lente del altímetro, el menisco del etanol líquido y la marca que fue pintada con un plumón a dos centímetros del borde superior de la celda.

Llenar la Tabla (1) con los datos experimentales manteniendo constante la abertura de la pinza de Hoffman.
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2.3 Producción de humos de incienso para que se manifieste la convección del etanol en aire dentro de la celda de vidrio

Para lograr la convección de los vapores de etanol en el aire dentro de la celda de difusión, es necesario seguir el procedimiento anterior pero ahora será necesario cambiar de posición de la celda de Hoffman, así como se muestra en la Figura 7 abriendo LENTAMENTE la piza de Hoffman para que se formen remolinos convectivos de humos de incienso como los que se muestran en la Figura 8.
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Figura 7. Reubicación de la pinza de Hoffman para lograr
                    que se muestre la convección
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Figura 8. Operación de la celda de difusión donde se observa la
convección de los humos de incienso mezclado con los         
vapores de etanol en aire.
Llenar la Tabla (2) con los datos experimentales manteniendo constante la abertura de la pinza de Hoffman cuando se empezó a manifestar la convección.
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3. MATERIALES 

Un vernier
Un baño de temperatura controlada
Un vaso de precipitados de 600 mL con etanol RA (reactivo analítico) 
Un distribuidor de aire con manguera (cajita de acrílico)
Una pinza de Hoffman o una pinza de Mohr
Una te de cristal 
Cinco mangueras de hule látex
Cinco celdas de difusión
Un cronómetro
Un catetómetro
Dos soportes universales con pinzas
Un plumón con tinta para escribir en rojo o en negro
Una regla flexible
Una bomba de vacío
Dos jeringas de plástico de 5 mL
Dos embudos de vidrio de talle corto 
Dos vasos chicos de Erlenmeyer
Una bolsa con trozos de incienso
Un cúter
Un encendedor 
Un taladro con broca 
La libreta número 1 de la bitácora del LIQ-III

3.1 SUSTANCIAS

600 mL de etanol RA (Reactivo Analítico)

3.2 SERVICIOS AUXILIARES

Energía eléctrica de 110 volts
Agua caliente a 50°C
Aire a presión

4.  FOTOGRAFÍA
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Figura 9. Equipo para el estudio de la difusión y la convección




5.  MEDIDAS DE HIGIENE Y SEGURIDAD

Utilizar lentes de seguridad para el manejo del etanol

6.  DESARROLLO EXPERIMENTAL (incluir arranque, operación y paro)

Arranque del equipo

1.- Dibujar con un plumón una raya roja a 2.0 cm abajo del borde superior de la celda de diámetro interno = 0.95 cm.
 2.- Utilizar un soporte universal con dos pinzas para sujetar la celda de difusión y el embudo del incienso, conectar la celda al baño de temperatura controlada con mangueras de hule látex. 
3.- Programar el baño de agua a 50ºC
4.- Utilizar otro soporte universal con pinzas para sujetar el distribuidor de aire apuntando la ranura de salida al borde superior de la celda. El distribuidor de aire deberá conectarse con mangueras de hule látex a la bomba de vacío acoplando una manguera de hule, una te de cristal y una pinza de Hoffman para obtener un flujo muy bajo para la difusión y un flujo alto para la convección que fluya perpen-dicular al borde de la celda.
5.- Vaciar etanol RA (Reactivo Analítico) a la celda hasta que el menisco del alcohol toque la marca trazada a 2.0 cm de la celda. 
6.- Hacer coincidir el menisco del etanol contenido en la celda con el puntero óptico de la cruz del catetómetro. 
7.- Esperar 3 minutos para considerar el factor de expansión del etanol cuando se calienta a 50ºC, después corregir la nueva altura del altímetro, y oprimir el botón de cero ubicado en su carátula digital de altímetro.

Operación del equipo

8.- Hacer pasar la corriente de aire por la ranura del distribuidor arrancando la bomba de vacío y esperar 30 segundos antes de comenzar el conteo del tiempo con el cronómetro. Durante este tiempo verificar que la ranura del distribuidor de la caja de acrílico esté alineada a la boquilla de la celda y la marca óptica del catetómetro esté alineada con el menisco del etanol, las tres condiciones deben de coinsidir
9.- Registrar al final de los tiempos de operación los valores leídos en la carátula del altímetro, después, apuntar nuevamente el puntero óptico a la altura que descendió el etanol 


Paro del equipo

10.- Apagar los botones de energía eléctrica de la bomba de vacío y del baño de temperatura controlada 
11.- Apagar el botón de encendido del catetómetro 
12.- Vaciar el agua caliente del baño de temperatura controlada
13.-Desconectar cuidadosamente todas las mangueras de hule látex
14.- Guardar las celdas de difusión-convección en sus bolsas correspondientes



7. CUESTIONARIO

1.- ¿Cuál es el propósito de hacer pasar una corriente de aire paralela al borde superior de la celda?




2.- Si el etanol que se utiliza en la celda de difusión es químicamente puro (), utilizar la ley de Dalton-Raoult    para evaluar la fracción mol en la interfase  donde se dan las vaporizaciones del etanol a presión de (586 mm Hg) y temperatura de (50°C), consultar la expresión para calcular la presión de vapor del etanol (pA°) en el Anexo 10.3

3.- Utilizar la información del Apéndice 10.3 para ver el procedimiento para calcular el coeficiente de difusión binaria DAB = 10.586 cm2/min cuando se utiliza la presión atmosférica P = 0.771 atm (586 mm Hg) y T = 50°C. REPORTAR SUS CÁLCULOS.

          PM (Etanol) = 46.07       σ (Etanol) = 4.53 A°       ε A / K = 362.5   °K
          PM (Aire) = 28.97           σ (Aire) = 3.617 A°         ε B / K = 97        °K

4.- Calcular la concentración de la mezcla gaseosa C dentro de la celda de difusión en gamol de mezcla / cm3 de mezcla si la mezcla se comporta como un gas ideal
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5.- Para la difusión: Reportar el flux molar difusivo NAz en gmol de ETOH / min cm2 a los 15 minutos de operación y el perfil de las fracciones molares de los vapores de ETOH en AIRE por difusión unimolecular desde la interfase al borde superior de la celda al finalizar también los 15 minutos de operación. 



6.- Para la convección: Utilizar el modelo de la película para reportar la rapidez inicial de vaporización por convección visto como un flux molar NAz en gmol de ETOH / min cm2 de los vapores de etanol en aire al finalizar los 15 minutos de operación.
7.- Comentar las magnitudes de los dos fluxes molares a los 15 minutos de operación, el de difusión y el de convección.


8. NOMENCLATURA

As = Área de la superficie interfacial entre el etanol y el aire, área transversal de las celdas de difusión (cm2)
C = Concentración de la mezcla gaseosa de la mezcla de los vapores de etanol y aire: gmol de mezcla gaseosa / cm3 de mezcla gaseosa
DAB = Coeficiente de difusión binario (cm2 / min)
ht = Altura de la base del menisco del etanol en el catetómetro a diferentes tiempos en (cm)
JAZ = Rapidez instantánea de transferencia de masa molar por difusión en (gmol   EtOH / min cm^2)
GAZ = Flujo molar de vaporización del etanol líquido (gmol EtOH / min)
n = Exponente adimensional
P°ETOH = Presión de vapor del etanol (mm de Hg)
PMA = Peso molecular del etanol (g /gmol)
PT = Presión total en el Laboratorio de Ingeniería Química = 586 mmHg
yA = Fracción mol de etanol en aire
t = Tiempo de operación en (min)
Tc = Temperatura crítica del etanol en (grados Kelvin)
TK = Temperatura de operación en (grados Kelvin)
WAZ = Flujo de masa molar por difusión y convección del etanol en la fase gaseosa en (gmol EtOH / min) 
Z to = Altura con valor de 2 cm en la celda de difusión a tiempo cero en (cm)
Z t = Altura de los decrementos temporales del nivel del etanol en la celda (cm)

Z = Diferencia de alturas entre el borde de las celdas y la altura del menisco del    
 ETOH (cm)   

t = Diferencia de tiempo (min) 

 = Densidad del etanol en (g / mL)
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10.  ANEXOS   

Anexo 10.1 Difusión molecular

La ley de difusión de Fick establece que la difusión molecular es proporcional a la disminución del gradiente de concentración; es decir, para una mezcla gaseosa o líquida de dos componentes A y B, el vector densidad de flujo JA (o flux por difusión) de la especie A está asociado con respecto a un observador que se desplaza con la velocidad media de la corriente y viene dada por

[image: ]

El flux total NA o la densidad de flujo total de la especie A, con respecto a un observador estacionario, es

[image: ]
  



En estas ecuaciones cA es la concentración del componente A, DAB es la difusividad de A en B (o de B en A), y  yA es la fracción molar. El segundo término de la ecuación (2) tiene en cuenta el transporte debido al flujo global que está compuesto por el transporte difusional superpuesto al transporte convectivo.

Dos situaciones físicamente frecuentes a las que es aplicable la ecuación (2) son:


1.- Contradifusión equimolar donde el número de moles de A que difunden en una dirección es igual al número de moles de B que se difunden en la dirección opuesta; es decir, y la ecuación (2) se reduce a 


                                                                         (3)

RECORDAR QUE: 



En esta experimentación de difusión NO se presenta la contra difusión equimolar. Cuando se vea en este curso el guion de destilación continua de multicomponentes se analizará con detalle.



2.- Difusión unimolecular de un componente A a través de un componente B estancado; es decir ()  . Por lo tanto, la ecuación (2) se reduce a:



                                                                      (4)

[image: ]

Que cuando se aplica a través de una película (como el espacio de 2 cm en la celda de difusión-convección) que se extiende desde z1 hasta z2 se transforma en


                                                                    (5)


	


	





Figura 10. Difusión unimolecular del componente A
a través de un componente B estancado


En la difusión unimolecular el transporte de masa del componente A ocurre a través de un componente B estancado, así NB = 0 y por lo tanto la ecuación (2) se puede aplicar a la altura de la película estancada de coordenada z

                                                                               (6)

Integrando desde z1 a cualquier z entre z1 a z2


                                                                                 (7)

se llega a,


                                                                                    (8)

De la ecuación (8) se puede despejar yA, la variación de la fracción molar en función de la altura de la coordenada z, entre z1 y z2


                                                                  (9)

Donde C, es la concentración de la mezcla etanol-aire en gmol de mezcla/cm3 de mezcla y se comporta como mezcla ideal y se calcula con: 



,         

Consultar el anexo 10.3 para evaluar el coeficiente de difusión DAB.


Una alternativa se obtiene cuando la ecuación (7) se integra tomando el valor de 
z = z2


                                                                                          (10)


En la ecuación (10) el flux por Difusión unimolecular del componente NAZ que se genera por las vaporizaciones en la interfase del ETOH y el AIRE se mantiene constante a medida que se desplaza hacia arriba y sale por el borde superior de la celda, debido a que el ETOH líquido se comporta en el estado pseudoestacionario.

10.2 Transferencia de masa en la interfase, el mecanismo por convección

Para múltiples aplicaciones en ingeniería, es necesario relacionar la rapidez de la transferencia de masa NAZ de especies químicas de una fase a otra, la cual ocurre a través de una interfase. Una interfase es la superficie frontera entre dos fases que se tocan. En general, las propiedades de cada fase en las regiones de la interfase difieren de las que prevalecen en su seno de cada uno de los filudos lejos de la interface. Para estudiar la convección es necesario aprender el modelo de las dos películas citado a continuación:
 
Modelos para la transferencia de masa molar en la interfase 
gas-líquido


Se han propuesto varios modelos para describir los fenómenos que ocurren cuando una fase gaseosa se pone en contacto con una fase líquida. El modelo que más se ha utilizado hasta ahora es la teoría de las dos películas propuesta por Whitman y  Lewis. En esta teoría se supone que existe un estancamiento de fluido en ambas fases a lo largo de la interfase. En la fase gaseosa, el componente  experimenta una resistencia a su transferencia hacia la interfase, esta resistencia está localizada en la película del gas.
[image: ]

Figura (11). El concepto de las dos películas para la transferencia de masa molar entre un gas y un líquido


En la interface no hay resistencia, por lo que se cumple la ley de Henry:






donde  tiene las siguientes unidades [m3 atm/kmol]. Después de la interfase del lado del líquido se supone que la resistencia a la transferencia de está en la película de líquido, saliendo de esta película, existe turbulencia capaz de eliminar los gradientes de concentración de A disuelta en el líquido absorbente ubicados lejos de la interfase, lugar conocido como el seno de la fase líquida (en inglés: bulk). Este concepto se ilustra en la Figura (11).

La teoría de las dos películas se originó a partir de la imagen adoptada para la transferencia de calor entre un fluido caliente y una superficie metálica a lo largo de la cual el fluido fluye en movimiento turbulento. En ese caso también se supone que en cada punto a lo largo de la superficie, el calor se transfiere del fluido al sólido a través de una película límite laminar sólo por conducción. Todo el gradiente de temperaturas se limita a su película, ya que la turbulencia es suficiente para eliminar cualquier gradiente fuera de la película. Aplicando la ley del enfriamiento de Newton a la conducción a través de la película en la dirección perpendicular al flujo del líquido se obtiene


              ó



Donde 


Es la conductividad térmica del líquido adherido a la superficie del metal

Es el espesor de la película del líquido adherida a la superficie de metal

Es el coeficiente individual y temporal de transferencia de calor para la ley de 
       Newton del enfriamiento 

Estos mismos conceptos fueron aplicados a la transferencia de masa molar de un gas a un líquido, para los cuales se puede escribir, sin considerar alguna reacción de la siguiente manera:



  donde 



   donde 


Como no hay información para calcular  ni tampoco para , se han definido las relaciones anteriores que representan el significado físico de los coeficientes individuales y temporales de transferencia de masa molar:


A continuación, se muestra el modelo de la película en la celda de difusión-convección considerando sólo la convección de fase gaseosa, el espesor de esta película es , es decir, será el valor final del altímetro ht a los 15 minutos de operación, es la diferencia de alturas que disminuye el nivel del etanol por convección como lo muestra la Figura (12).

[image: ]
Figura (12). La celda de difusión-convección sólo considera la vaporización de la fase líquida del ETOH desde la interfase hacia el aire contenido en 2 cm de la celda. Aquí no existe un perfil de fracciones molares debido a la formación de remolinos. 

Si mentalmente giramos a la izquierda la Figura 12 se obtiene el esquema de la Figura (13)
[image: ]
Figura (13). La transferencia va de la interfase del líquido al aire por vaporizaciones del etanol, no se forma una película del lado del líquido porque sólo hay un solo componente.

Anexo 10.3 Ecuaciones para calcular las densidades, las presiones de vapor y el coeficiente de difusión DAB

Ecuación para calcular la densidad del etanol (en gramos/cm3)

A = 0.2657            B = 0.26395
n = 0.23670           Tc = 516.25  °K


       en g/cm3    

Ecuación para calcular la presión de vapor del etanol en (mm de Hg)

 Constantes
           A = 23.8442,  B = - 2.8642 x 103,  C = -5.0474,  D = 3.7448 x 10 -11, 
            E = 2.7361 x 10 - 7
        

 en mmHg


[bookmark: _GoBack]
Información para el cálculo del coeficiente de difusión DAB, consultar la referencia [4], página 16-21.

[image: ]
[image: ]
[image: Texto, Carta

Descripción generada automáticamente]

1.003 se calcula con la información de la tabla siguiente B-2

[image: Tabla

Descripción generada automáticamente]
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Descripción generada automáticamente]

Para este ejemplo hay que interpolar

	kT/eAB
2.30
2.40
2.50
2.60
	

1.026
1.012
0.9996
0.9878
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Por lo tanto


1.003
[image: ]
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Ejemplo 16.4-1. Célculo de la difusividad a baja densidad
Predecis el valor de 74 para las mezclas de argon (4) y oxigeno(B)a 293,2°K y 1 atm

de presion total.
Solucién. De la Tabla B- 1 se obtienen las siguientes constantes:

My = 30048  ay= 3418A; ‘_:- e

Mp=32,000; ap=3433 A B= 113K

Los parimetros a4 y ¢4 /K para las colisiones de argén con oxigeno pueden estimarse
‘mediante las Ecs. 164-15 y 16:
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Con lo que KTJeyp = 293,2/118,5= 2,47, y de la Tabla B -2 se obtiene Qg 4p = 1.003.
Substituyendo los anteriores valores en la Ec, 16.4-13. queda "’
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Tabla (1). Datos experimentales para la difusion del etanol en aire

Celda
Di=1.12cm
A =0.985 cm?

t ht
(min) (cm)
0 0
5
10
15

t ht Lz=Zto+ht
(min) (cm)

0 0 Zto=2

15 Lz=2+

ht = Es Ia altura que proporciona la
pantalla del altimetro a los diferentes
tiempos de operacion.

Zto = Es el eje coordenado de la celda
de difusién para un tiempo to igual a

cero.

Lz = Es la longitud del menisco del
etanol liquido en la celda a los 15 min
de operacién
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Tabla (2). Datos experimentales para la conveccién del etanol en aire

Celda t =
ht Lz=2Zto + ht
Di=1.12cm ) ©
A =0.985 cm? min) | cm) (cm)
0 0 Zto=2
1 ht 15 =2+
(min) (cm)
0 0 ht = Es la altura que proporciona la
pantalla del altimetro a los diferentes
5 tiempos de operacion.
10
5 Zto = Es el eje coordenado de la celda de
difusién para un tiempo igual a cero.
Lz = Es la longitud del menisco del etanol
liquido a 15 min de operacién
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