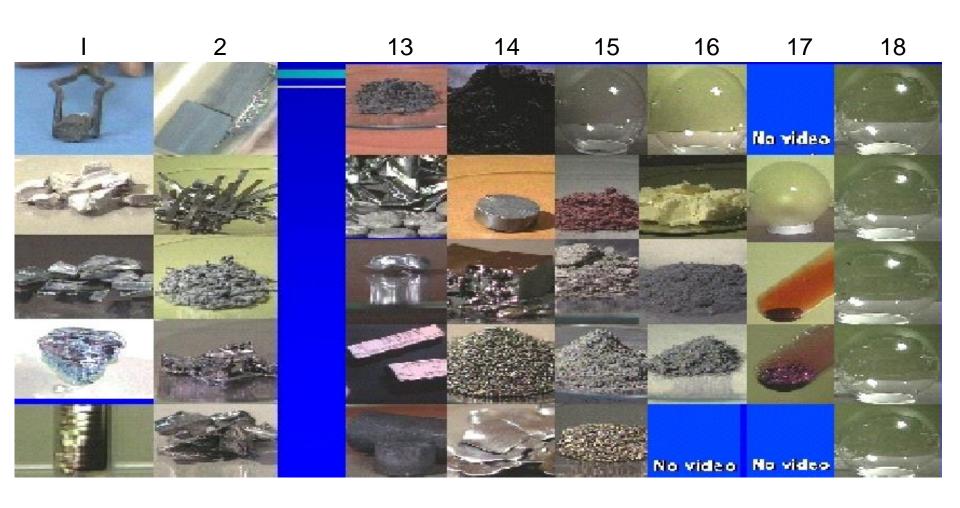
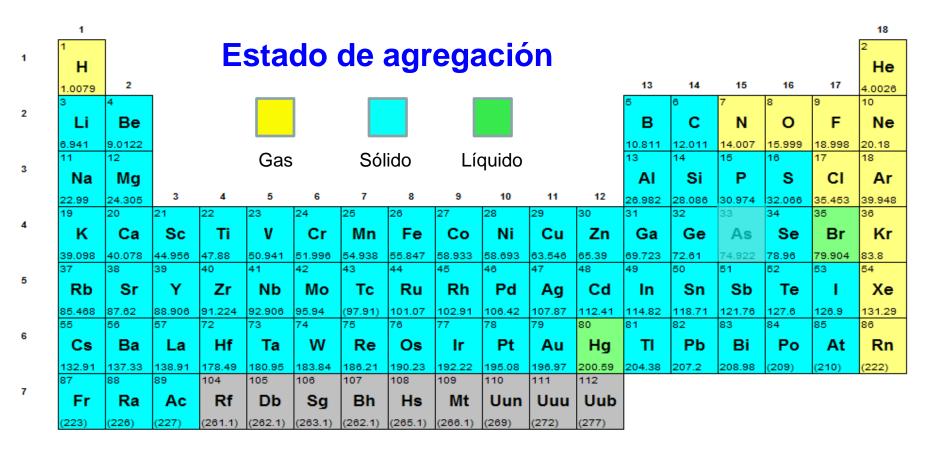


Estructura electrónica y periodicidad


Principios de Estructura de la Materia

Unidad 0: Antecedentes


Sigfrido Escalante Tovar ene - 2020

Los elementos químicos

Lanthanide Series	
Actinide Series	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	(144.9)	150.36	151.97	157.25	158.93	162.5	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244.1)	(243.1)	(247.1)	(247.1)	(251.1)	(252.1)	(257.1)	(258.1)	(259.1)	(262.1)

IUPAC

Facultad de Química Departamento de Química Inorgánica y Nuclear Dr. Sigfrido Escalante Tovar

Periodic Table of the Elements

> printable version [pdf file - 17KB] - sized to print on A4 and US letter paper. For a brief review, see <u>Chem. Int. 2004, Jan. p. 8</u>; CI tear off version [pdf file -474 KB]

V Below each element is keyed to a color matching the time of its discovery

•	Time	of E	Disco	very	,	Befor	re 180	0 18	00-18-	49 18	350-18	399 1	900-1	949	1950-	1999	
1																	18
1 H 1.0079	2											13	14	15	16	17	2 He 4.0026
3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08		80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89- 103	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Uuu (272)							
			57	58	59 D::	60 N1	61 D	62 C	63	64 C 1	65 TPI-	66 D	67 TT-	68 E.:	69 Tr	70 3 71-	71
			La 138.91	Ce 140.12	Pr 140.91	Nd 144.24	Pm (145)		Eu 151.96	Gd 157.25	Tb 158.93	Dy 162.50	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97
			89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)		96 Cm (247)		98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Notes

Element with atomic number 111 has not yet been named; the IUPAC provisional symbol is shown. Element with atomic numbers 112, 114, and 116 have been reported but not fully authenticated as of September 2003 (*Pure Appl. Chem.* **75**(10), pp. 1601-1611, 2003).

Atomic weights last revised based on the 1999 review published in <u>Pure Appl. Chem.</u> 73(4), pp. 667-683, 2001, and the most recent review (2001) published in <u>Pure Appl. Chem.</u> 75(8), pp. 1107-1122, 2003.

A similar table, commemorative of **IUPAC 80 Years of Service to Chemistry** was produced as a laminated postcard and distributed with the **Nov. 2000 issue of** *Chemistry International*

La tabla "oficial" en 2003

IUPAC

La Tabla "oficial" el 30 de enero de 2013

1	1								_	_							18
н́					ı	UPAC	Perio	dic Tal	ole of	the Ele	ement	5					He
hydrogen (1.007; 1.009)	2		Каус									13	14	15	16	17	helium 4.000
3	4	1	atomic num	ber							,	5	6	7	8	9	10
Li	Be		Symb	ol								В	C	N	0	F	Ne
Bhlan p.em; e.em;	beryllum 9.012		dender denke	wight								boon rose rose	carbon (0.00 0.00)	ntrogen (1400;1401)	0.3ygen [15.99;16.00]	Buorine 19.00	20 W
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
2229	magnasium 2431	3	4	5	6	7	8	9	10	11	12	aluminium 20.90	silicon	phosphorus 3097	mitr [20:00;30:00]	chlorine ps44 26.49	argon 38.96
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
3810	4008	4496	4787	5694	22.00	54.94	5585	59.50	5849	60.55	65.38(3)	09.72	70.00	7492	20.00(3)	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubi dium 8547	strontum 8782	ythum 8891	zirconium 9122	niobi um 9391	molybdenum esse(2)	technellum	sutherium 101.1	hodium 1039	palladium 1004	107.9	cadmium 1974	Indium 1148	tin 1187	antimony 121.8	te Burtum 1978	lodine tiss	121.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
con sturn	betum		hafnlum	tantal um	tungsten	rhenium	ouni um	l é dium	platnum	gold	mercusy	thollum	leund	blumuth	polon lum	autotine	radon
120.9	197.3	89-103	196.5	105	108	100.2	180.2	109	186.1	111	2006 112	bors sord	2072	209.0	116		
Fr	Ra	actnoids	Rf sathwriterdum	Db daterium	Sg	Bh	Hs	Mt melbeckm	Ds darmatadikum	Rg rowntgenium	Cn		FI		Lv		
		l	I I									1		4		1	
		57	58	59	60	61	62	63	64	85	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		lanthanum 138.9	outum 140.1	prawodymkan 140.9	neodymium 166.2	pomehlum	mmarkm 164	europken 192.0	gadolinken 157.3	Serbium 198.9	dysperatum 160.5	holmlum 184.9	erbium 1973	thuken 100.0	ytierbium 173.1	Medium 175.0	
		89	90	91	92	93	94	96	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actrium	horium 200.0	protectinium 221.0	uranium 238.0	neptunkum	plutorium	americken	curium	berkelum	calfonium	einsteinkan	fermium	mendel evi um	nobelum	Lawrencham	
			245	221.0	2.80												I

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Notes

- IURAC 2009 Standard atomic weights abridged to four significant digits (Table 4 published in Pure Appl. Chem. 83, 359-396 (2011); doi:10.1351/BAC-REP-10-09-14). The uncertainty in the last digit of the standard atomic weight value is listed in parentheses following the value. In the absence of parentheses, the uncertainty is one in that last digit. An interval in square brackets provides the lower and upper bounds of the standard atomic weight for that element. No values are listed for elements which lack isotopes with a characteristic isotopic abundance in natural terestrial samples. See PAC for more details.
- "Aluminum" and "cestum" are commonly used alternative spellings for "aluminium" and "caestum."
- Claims for the discovery of all the remaining elements in the last row of the Table, namely elements with atomic numbers 113, 115, 117 and 118, and for which no assignments have yet been made, are being considered by a IUPAC and IUPAP joint Working Party.

For updates to this table, see tupac.org/reports/periodic_table/. This version is dated 1 June 2012. Copyright © 2012 IUPAC, the International Union of Pure and Applied Chemistry.

La Tabla "oficial" en enero de 2016

1					I	UPAC	Perio	dic Tak	ole of	the Ele	ement	s					18
1																	2
H hydrogen																	He
[1.007, 1.009]	2		Key:	_								13	14	15	16	17	4.003
3	4		atomic num	ber								5	6	7	8	9	10
Li	Be		Symbo	ol								В	С	N	0	F	Ne
Ethium [6.938, 6.997]	beryllium 9.012		name standard abmic v	might								boron (10.80, 10.83)	08/bon [12.00, 12.02]	nitrogen [1400, 1401]	oxygen [1599, 1600]	fluorine 19.00	neon 20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	phosphorus	sultur	chlorine	argon
\vdash	p4.30, 24.31]											2698	[28.08, 28.09]	30.97	[3205, 3208]	[35.44, 35.46]	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39:10	calcium 40.08	scandium 44.95	titanium 47.87	venadium 5094	chromium 52.00	manganese 54.94	iron 55.85	cobalt 58.93	nickel 5889	copper 63.55	zine 65382)	galium 6972	germanium 72.63	arsenic 74.92	selenium 78.97	bromine [79.90, 79.91]	krypton as.ao
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
rubidum	strontium	yttrium	zirconium	niobium	molybdenum	technetium	rutherium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
8547	87.62	85.91	91.22	9291	95.95		101.1	1029	1054	107.9	112.4	1148	118.7	121.8	127.6	1269	131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium 1329	berlum 137.3		hathium 178.5	tantalum 1809	tungsten 183.8	rhenium 185.2	cernium 190.2	iridium 1922	platinum 1951	gold 1970	mercury 200.6	thallium [204.3, 204.4]	lead 207.2	bismuth 209.0	polanium	astatine	radon
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	a effective	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
tandum	ndum	actinoids	rutherbrdium	dubrium	seaborgium	bohrlum	hassium	meitherium	damstadtium	roentgerium	coperticium	ununtrium	ferovium	ununpentium	Ivermodum	urunseptum	ununcefum

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

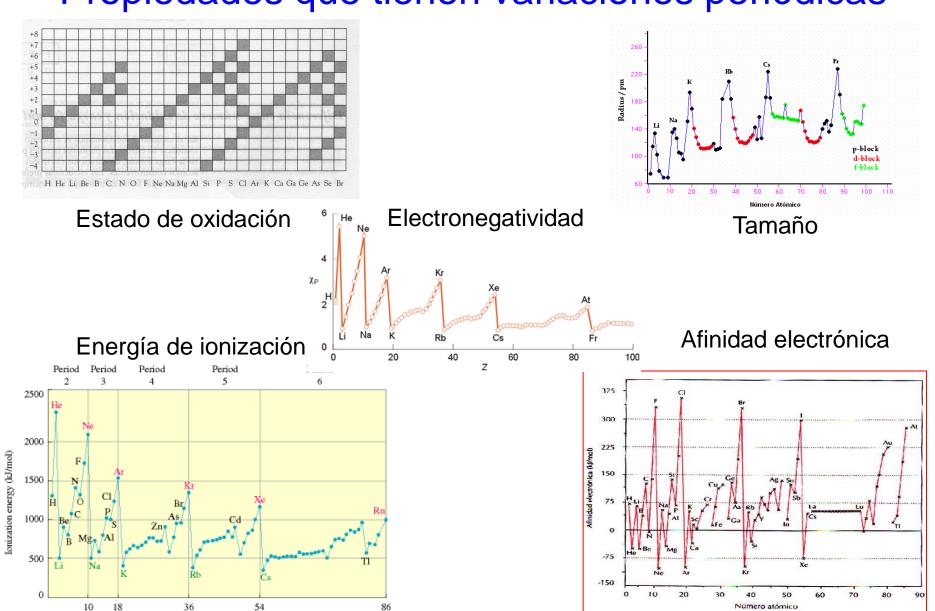
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
lanthanum	cerium	praseodymium	neodymium	promethium	samarlum	europium	gadolinium	tertium	dysprosium	holmium	erbium	hulium	ytterbium	lutefurn
1389	140.1	1409	1442		150.4	152.0	157.3	158.9	162.5	164.9	167.3	1689	173.0	1750
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	ourlum	berkellum	calibrium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	232.0	231.0	2380											

La Tabla "oficial" en noviembre de 2016

1	Ī				I	UPAC	Perio	dic Tak	ole of	the Ele	ement	s				Î	18
hydrogen																	He helium
[1.0078, 1.0082]	2	ĝ.	Key:									13	14	15	16	17	4.0026
3 Li lithium	Be beryllium		Symbo name	ol								5 B boron	6 C carbon	7 N nitrogen	8 O oxygen	9 F fluorine	Ne neon
6.94 [6.938, 6.997]	9.0122		conventional atomic v standard atomic v									10.81 [10.806, 10.821]	12.011 [12.009, 12.012]	14.007 [14.006, 14.008]	15.999 [15.999, 16.000]	18.998	20.180
11 Na sodium	12 Mg magnesium			_								13 Al aluminium	14 Si silicon 28.085	15 P phosphorus	16 S sulfur	17 CI chlorine	18 Ar argon
22.990	[24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	26.982	[28.084, 28.086]	30.974	[32.059, 32.076]		39.948
19 K potassium	Ca calcium	21 Sc scandium	22 Ti titanium	V vanadium	Cr chromium	Mn manganese	Fe iron	Co cobalt	28 Ni nickel	Cu copper	Zn zinc	31 Ga	Ge germanium	33 As arsenic	34 Se selenium	35 Br	36 Kr krypton
39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	79.904 [79.901, 79.907]	83.798(2)
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb rubidium	Sr strontium	Y yttrium	Zr zirconium	Nb niobium	Mo molybdenum	Tc technetium	Ru ruthenium	Rh rhodium	Pd palladium	Ag silver	Cd cadmium	In indium	Sn	Sb antimony	Te tellurium	iodine	Xe xenon
85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
55 Cs caesium	56 Ba barium	57-71 lanthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten	75 Re rhenium	76 Os osmium	77 r iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium 204.38 [204.38, 204.39]	82 Pb lead	83 Bi bismuth	Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 LV livermorium	117 Ts tennessine	118 Og oganesson

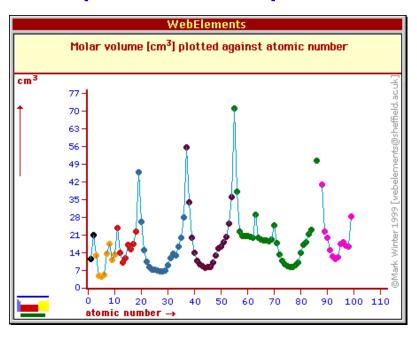
57 La lanthanum	58 Ce cerium	59 Pr praseodymium 140.91	60 Nd neodymium	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium 174.97
AC actinium	90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	No nobelium	103 Lr lawrencium

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

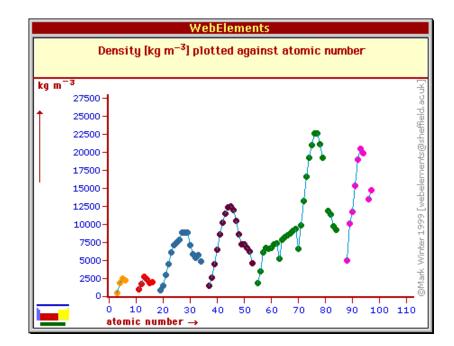

La ley periódica

"Si ordenamos a los elementos en orden ascendente de su número atómico, sus propiedades se repiten o presentan variaciones periódicamente"

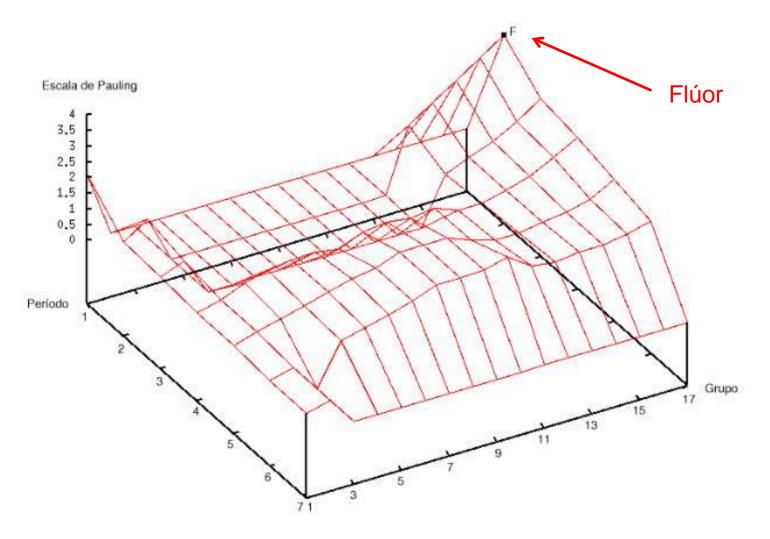
¿Cuáles son las propiedades periódicas?


Propiedades que tienen variaciones periódicas

Atomic number



Propiedades que tienen variaciones periódicas

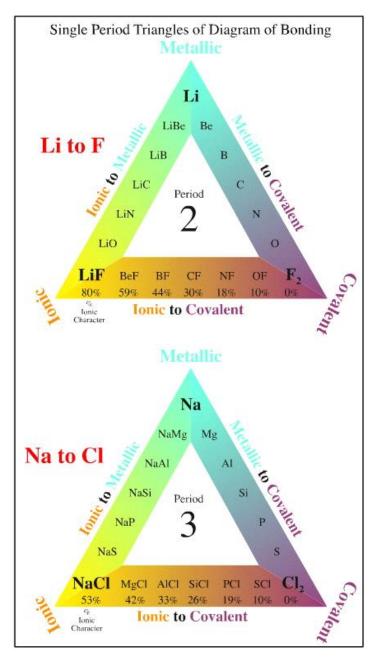

Volumen molar

Densidad

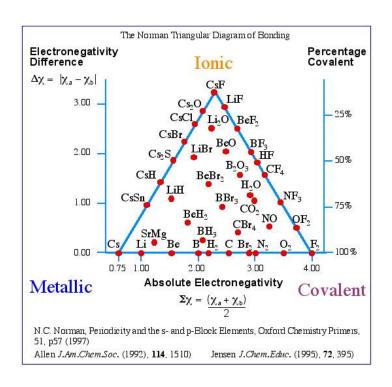
Variaciones en la electronegatividad

http://enciclopedia.us.es/index.php/Escala_Pauling

Elementos y compuestos


Los elementos químicos que conocemos provienen de una larga y compleja serie de procesos en el Universo que apenas empezamos a comprender.

Los compuestos de esos elementos reportados son:


70 493 385 a las 18:10 hrs. 30/ene/2013 i 85 404 946! a las 11:30 hrs. 3/abr/2014 la cuenta crece 20 compuestos por minuto.

http://www.cas.org/

Los diferentes tipos de compuestos

Triángulos de Van Arkel-Ketelaar

La escala atómica

- r (núcleo) $\cong 1x10^{-14}$ m
- r (átomo) $\cong 1x10^{-10}$ m

- $r(H^+)=0.84087 fm$
- r (H)= 120 pm
- $r(H^{-})=208 pm$

La ecuación de Schrödinger

La ecuación dependiente del tiempo

$$\left\{-\frac{\hbar}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + \mathcal{V}\right\}\Psi(x, y, z, t) = i\hbar\frac{\partial\Psi(x, y, z, t)}{\partial t}$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \qquad \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

La ecuación independiente del tiempo

 $\left\{-\frac{\hbar}{2m}\nabla^2 + \mathcal{V}\right\}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$

Las soluciones: orbitales hidrogenoides

$$\Psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) \bullet Y_{l,m}(\theta,\phi)$$

Factor de normalización

La parte radial

$$R_{n,l}(r) = -\left[\left(\frac{2Z}{na_0}\right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3}\right] e^{-\rho/2} \rho^l L_{n+a}^{2l+1}(\rho)$$

$$\rho = \frac{2Zr}{na_0} \qquad \zeta = \frac{Z}{n}$$

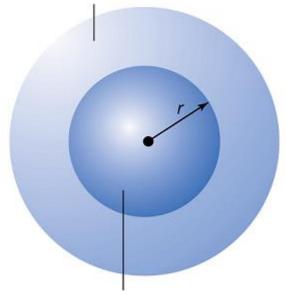
Las soluciones ...cont.

La parte angular

$$Y_{l,m}(\theta,\phi) = \Theta_{l,m}(\theta)\Phi_m(\phi)$$

$$\Theta_{l,m}(\theta) = \left[\frac{(2l+1)}{2} \frac{(l-|m|)!}{(l+|m|)!} \right]^{1/2} P_l^m(\cos\theta)$$

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$



Modelo de la aproximación orbital

La función de onda, Ψ, de un átomo de N electrones puede expresarse como el producto de las N funciones de onda de cada uno de esos electrones (orbitales)

$$\Psi(q_1, q_2, ..., q_N) = \psi_1(q_1), y_2(q_2),, \psi_N(q_N)$$

Electrones que prácticamente no contribuyen al apantallamiento

Electrones que contribuyen fuertemente al apantallamiento

(electrones independientes)

 $\mathbf{q_i}$: coordenadas espaciales del electrón i-ésimo $\psi_i(\mathbf{q_i})$: orbital hidrogenoide.

¿Cómo cuantificar las las repulsiones interelectrónicas?: *carga nuclear efectiva*

Z_{ef}= carga sobre un electrón particular a una distancia *r* del núcleo

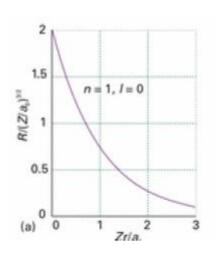
$$Z_{ef} = Z - s$$

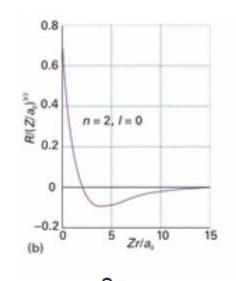
Z = carga nuclear formals = constante de apantallamiento.

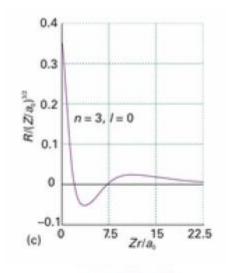
	n	1	2	2	3	3
Z		1s	2s	2p	3s	3p
1	Н	1				
2	Не	1,69				
3	Li	2,69	1,28			
4	Be	3,68	1,91			
5	В	4,68	2,58	2,42		
6	С	5,67	3,22	3,14		
7	N	6,66	3,85	3,83		
8	О	7,66	4,49	4,45		
9	F	8,65	5,13	5,10		
10	Ne	9,64	5,76	5,76		
11	Na	10,63	6,57	6,80	2,51	
12	Mg	11,61	7,39	7,83	3,31	
13	Al	12,59	8,21	8,96	4,12	4,07
14	Si	13,57	9,02	9,94	4,90	4,29
15	P	14,56	9,82	10,96	5,64	4,89
16	S	15,54	10,63	11,98	6,37	5,48
17	Cl	16,52	11,43	12,99	7,07	6,12
18	Ar	17,51	12,23	14,01	7,76	6,76

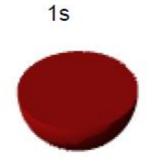
Penetración y apantallamiento

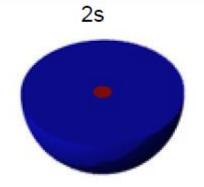
Cargas nucleares efectivas sobre los electrones de los 18 primeros átomos

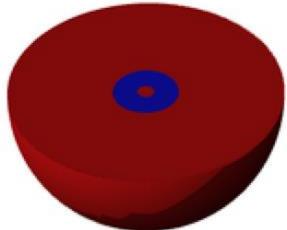

- •El orbital 2s es penetrante respecto al 1s
- •Para un orbital 2s, el **apantallamiento** de un 1s no será –1, sino un valor menor en valor absoluto
- •El orbital 3s es penetrante respecto al 2s y 2p
- •En la capa de valencia la carga efectiva sobre los orbitales s es mayor que sobre los p como consecuencia de la mayor **penetración** de los primeros.
- •Los electrones 1s son muy internos y están muy poco apantallados.

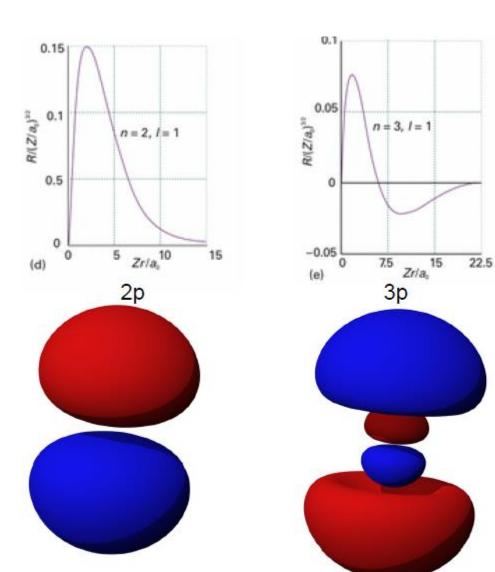

Para un orbital cualquiera Z_{ef} aumenta con el número *n*.

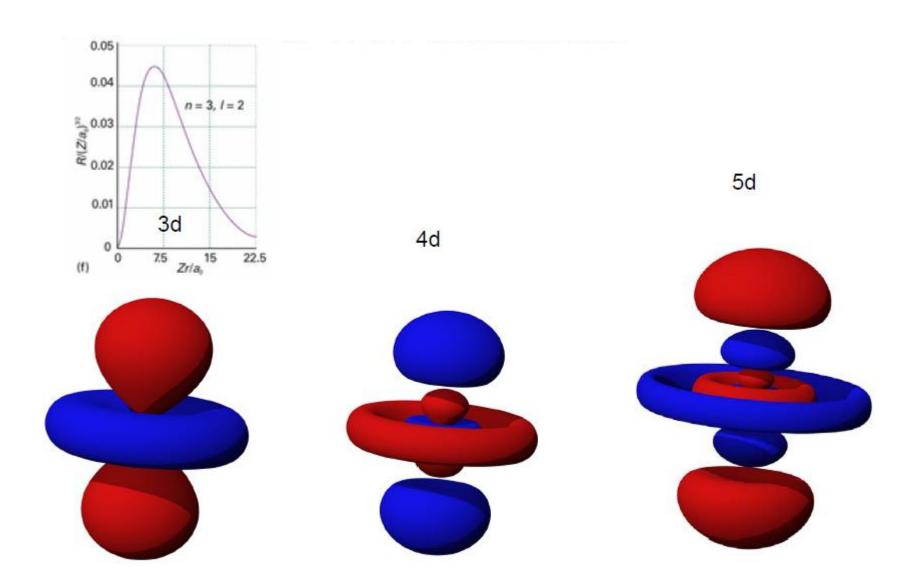

•En la capa de valencia, $Z_{ef}(s)>Z_{ef}(p)>Z_{ef}(d)>Z_{ef}(f)$

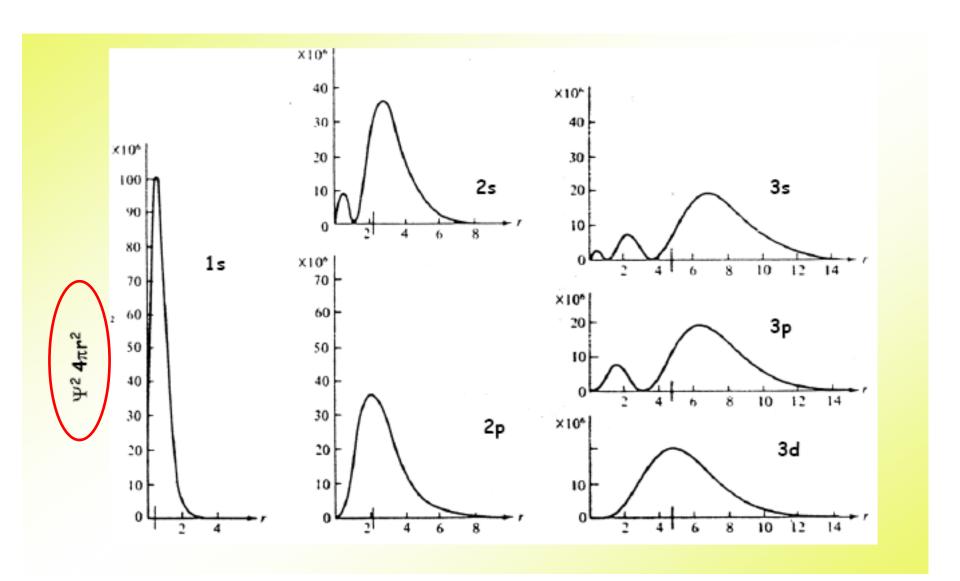



Nodos radiales: s



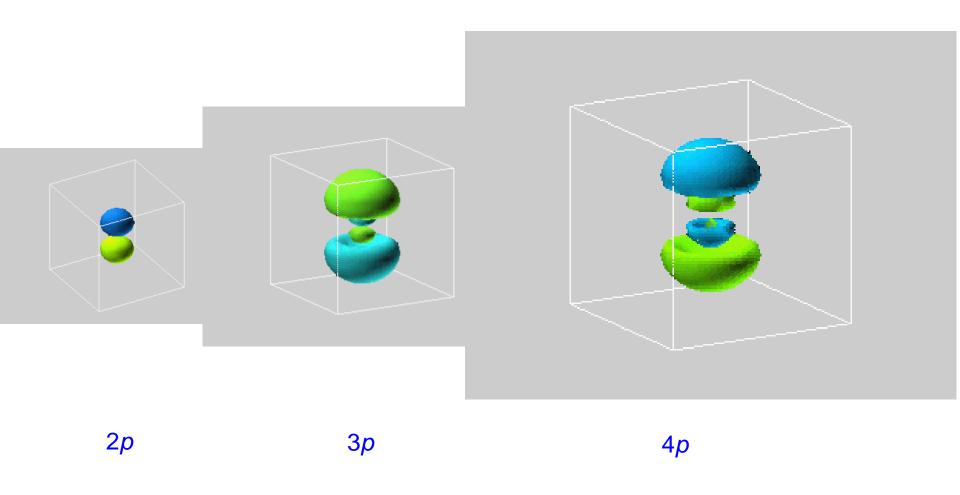



Nodos radiales: p



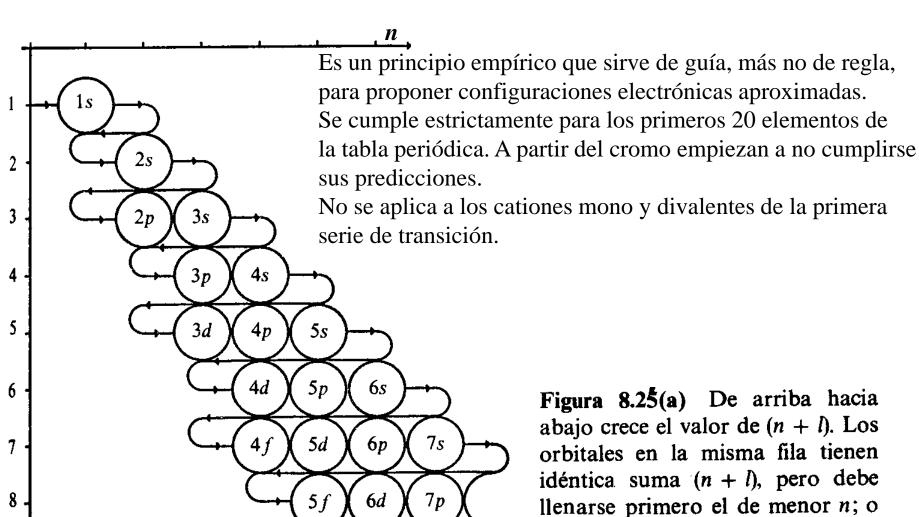
Nodos radiales: d

La función de distribución radial



Funciones angulares hidrogenoides

Tamaño orbital


http://winter.group.shef.ac.uk/orbitron/

The Orbitron gallery of atomic orbitals

sea, el que está más a la izquierda.

El principio de construcción (aufbau)

Algunas energías

Energía total electrónica

$$\langle E \rangle = \sum_{i=1}^{2N} \varepsilon_i - G$$

Repulsión interelectrónica

$$G = \frac{1}{2} \sum_{i,j=1}^{N} (J_{i,j} - K_{i,j})$$

Valor promedio de la repulsión interelectrónica

$$\langle \frac{1}{r_{12}} \rangle = J \pm K$$

Energía de intercambio

$$E_{ex} = \sum \frac{N(N-1)}{2} K$$

$$J = \iint [\emptyset_{1s}(1)]^2 \left(\frac{1}{r_{12}}\right) [\emptyset_{2s}(2)]^2 dV_1 dV_2$$

Integral coulómbica

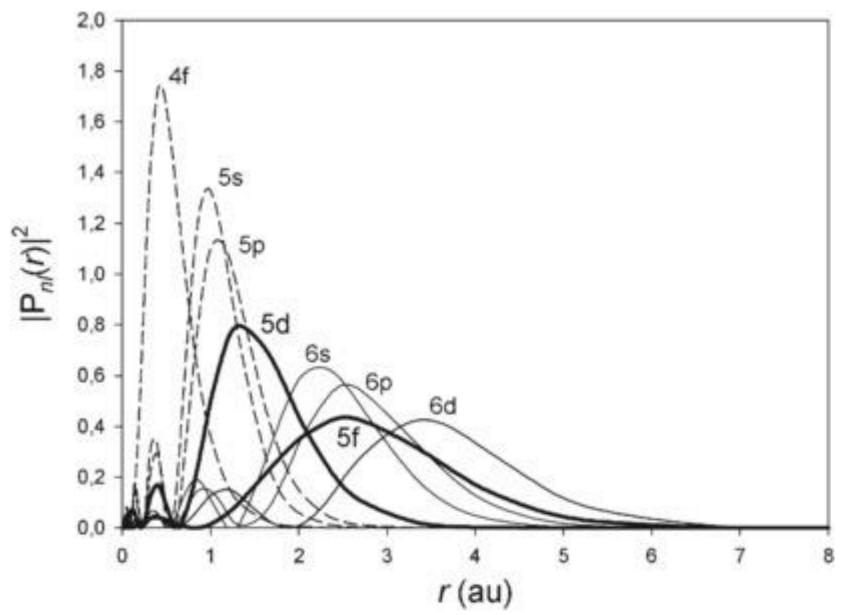
$$K = \iint [\emptyset_{1s}(1)] [\emptyset_{2s}(1)] \left(\frac{1}{r_{12}}\right) [\emptyset_{1s}(2)] [\emptyset_{2s}(2)] dV_1 dV_2 \qquad \text{Integral de intercambio}$$

$$E_{corr} = E_{exacta} - E_{HF}$$

Energía de correlación

Periodicidad, "anomalías"

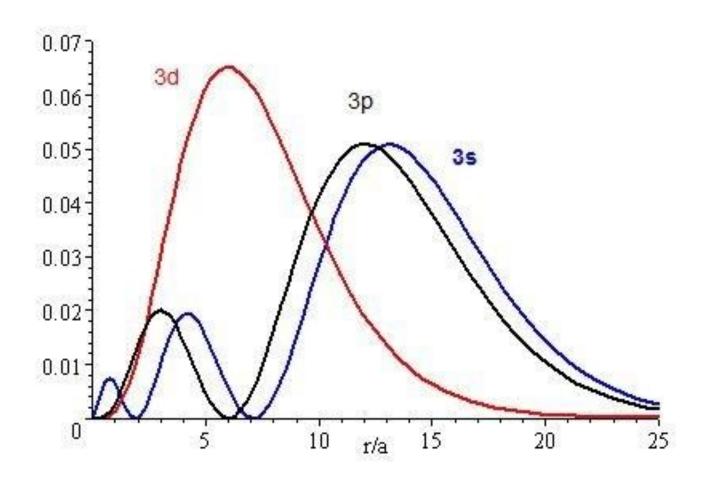
- Contracciones lantánida, escándida y boránida
- Relaciones diagonales
- Propiedades de elementos del 3er período
- Efecto del par inerte
- Efectos relativistas
- Enlaces π .


Contracción lantánida

Gpo 8	r (pm)	Gpo 10	r (pm)	Gpo 11	r (pm)
Fe	124	Ni	125	Cu	128
Ru	134	Pd	138	Ag	144
Os	135	Pt	138	Au	144

- A lo largo de un período disminuye el radio, excepto cuando se entra al bloque p.
- En algunas familias, el incremento de *n* **no** necesariamente da lugar a un aumento del radio.
- De la comparación de cálculos no-relativistas y relativistas se observa que esta contracción se debe, entre un 5 y un 15%, a efectos relativistas.

Funciones de distribución radial


Contracciones escándida y boránida

Gpo 13	r (pm)		Gpo 11	r (pm)
Al	143		Li	205
Ga	135		Na	223
In	167		K	277

Cada vez que cambia por primera vez el número cuántico ℓ , ocurre una contracción de los elementos que siguen. ¿Por qué?

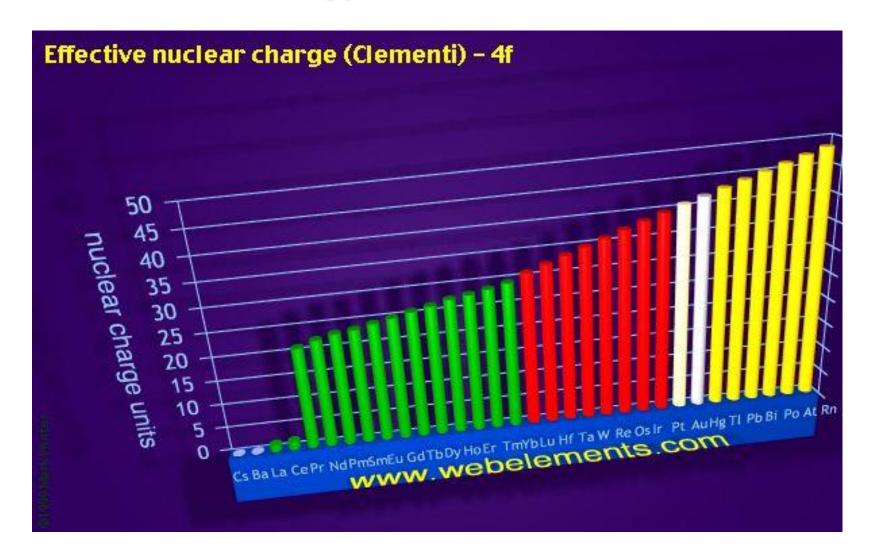
Funciones de distribución radial: Departamento de Química Inorgánica y Nuclear Dr. Sigfrido Escalante Tovar penetrabilidad

La Tabla "oficial"

1 H hydrogen					I	UPAC	Period	dic Tak	ole of	the Ele	ement	s					18 2 He
1.008	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		Symbolic name conventional atomic w standard atomic w	OI weight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 CI chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	Co cobalt	28 Ni nickel	Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
39.098 37 Rb rubidium	38 Sr strontium	44.956 39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	55.845(2) 44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	63.546(3) 47 Ag silver	65.38(2) 48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	74.922 51 Sb antimony	78.971(8) 52 Te tellurium	[79.901, 79.907] 53 I iodine	54 Xe xenon
85.468 55 CS caesium	87.62 56 Ba barium	88.906 57-71 lanthanoids	91.224(2) 72 Hf hafnium 178.49(2)	92.906 73 Ta tantalum	95.95 74 VV tungsten	75 Re rhenium	76 Os osmium	102.91 77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium 204.38 [204.38, 204.39]	82 Pb lead	83 Bi bismuth	127.60(3) 84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 LV livermorium	117 Ts tennessine	118 Og oganesson

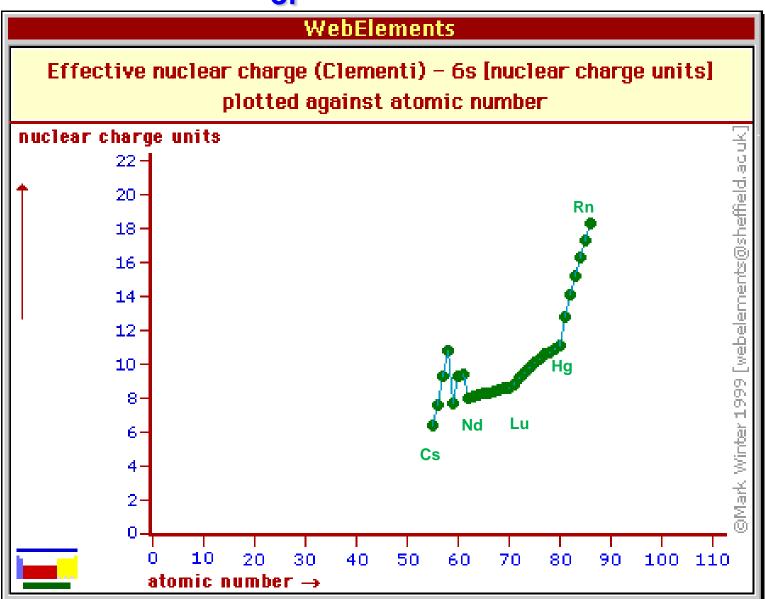
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57 La lanthanum	58 Ce cerium	59 Pr praseodymium 140.91	60 Nd neodymium	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
AC actinium	90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	No nobelium	103 Lr lawrencium

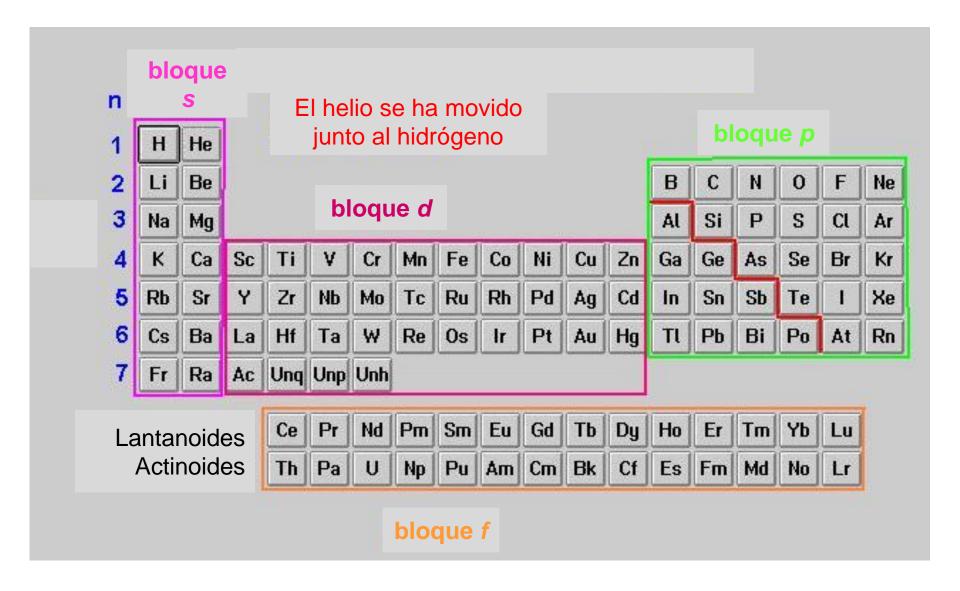

Apantallamiento de los orbitales 4f

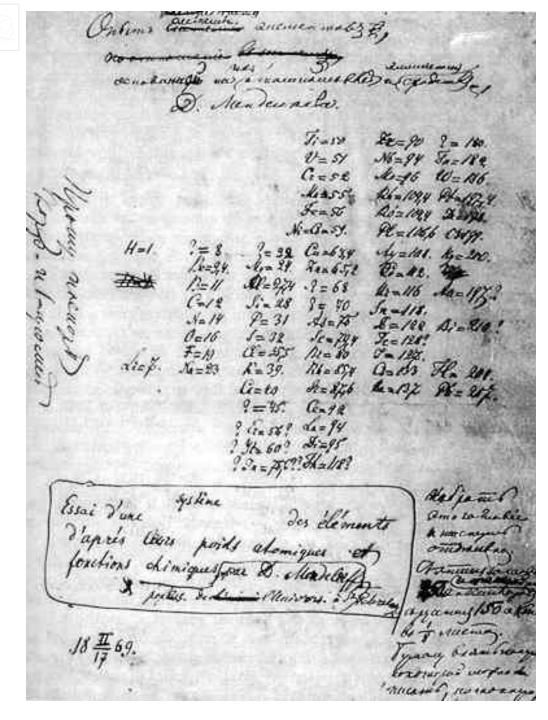
Elemento	Num. atómico	Z* _{6s}
Sm	62	8.01
Eu	63	8.12
Gd	64	8.21
Tb	65	8.30
Dy	66	8.34
Но	67	8.44
Er	68	8.48
Tm	69	8.58
Yb	70	8.59
Lu	71	8.80

Cuando se comparan cálculos relativistas de esos átomos con cálculos no-relativistas, se estima que de un 5 a un 15% de la contracción se debe a efectos relativistas.



Z_{ef} en los 4f




Z_{ef} en los 6*s*

Bloques: s, p, d, f

Óxidos y periodicidad

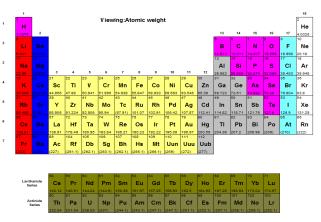
Periodicidad en óxidos

Producto preferente en su reacción con oxígeno:

Li: Li₂O el óxido

Na: Na₂O₂ el peróxido

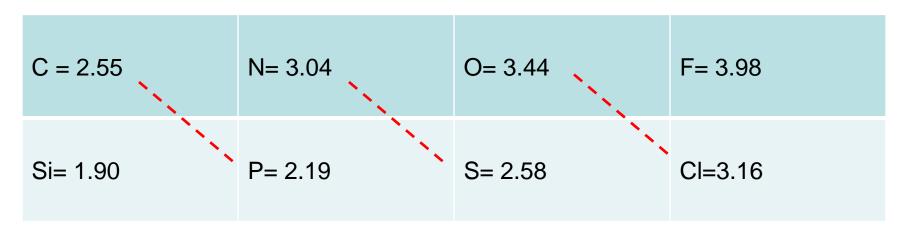
Los demás: KO₂, RbO₂, CsO₂ el superóxido


$$O^{2-}$$
 O_2^{2-} O_2^{2-}

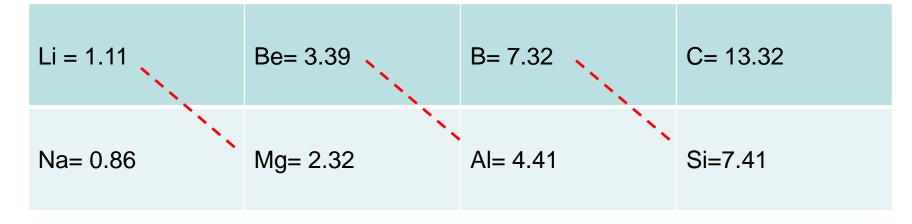
La reactividad y propiedades del litio, cabeza del grupo, son diferentes a las del resto del grupo. Su pequeño tamaño y su electronegatividad son determinantes.

Periodicidad en Alcalinotérreos

- Todos son metales
- Magnesio se parece a Zn



- Berilio, cabeza de grupo, es muy diferente, se parece al Aluminio. Por ejemplo, su óxido BeO es claramente covalente.
- Los demás, Ca, Sr, Ba y Ra son más similares entre sí.
- Su reactividad aumenta con el número atómico, aunque son menos reactivos que los alcalinos.
- Todos forman nitruros mientras que sólo el litio lo hace en los alcalinos



Relaciones diagonales

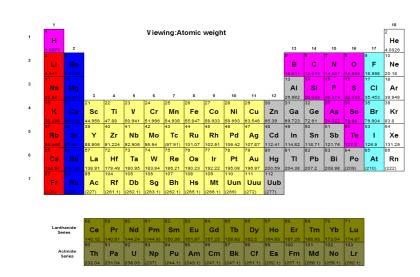
Electronegatividad

Potencial iónico ($\phi = Z/r$)

Enlaces π

Energías de enlace (kJ mol⁻¹)

C=C	272				
C=Si	159	Si=Si	105		
C=Ge	130	Si=Ge	105	Ge=Ge	105
C=Sn	79				


Los dobles enlaces más estables son los que se forman entre carbonos.

Preferencias en las valencias

Grupo 14

$$M^{2+} \longrightarrow M^{4+} + 2e$$

Conforme se desciende en el grupo 14 el estado de oxidación preferente es 2, en lugar de 4.

Algo similar ocurre en los grupos 13 y 15.

Tendencias en la valencia

GeCl₂ + Cl₂ → GeCl₄
 (reacción incontrolablemente rápida)

SnCl₂ + Cl₂ — SnCl₄
 (reacción lenta)

PbCl₂ + Cl₂ → PbCl₄
 (ocurre bajo condiciones drásticas)

Tendencias en la valencia

Hidruro

CH₄

SiH₄

GeH₄

SnH₄

PbH₄

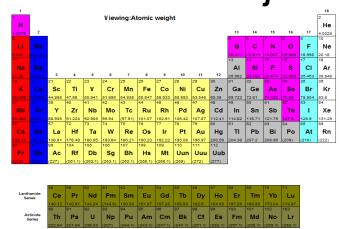
Temperatura de descomposición (°C)

800

450

285

150


0

Estados de oxidación

	ox/red	E_0	ox/red	E_0	ox/red	E_0
•	C ⁴⁺ /C ²⁺	-0.106	C ²⁺ /C	0.517		
•	Si ⁴⁺ /Si ²⁺	-0.967	Si ²⁺ /Si	-0.808		
•	Ge ⁴⁺ /Ge ²⁺	0.00	Ge ²⁺ /Ge	0.247	Ge ⁴⁺ /Ge	0.124
•	Sn ⁴⁺ /Sn ²⁺	0.15	Sn ²⁺ /Sn	-0.141		
•	Pb ⁴⁺ /Pb ²⁺	1.69	Pb ²⁺ /Pb	-0.1251		

La tendencia a oxidarse cambia gradualmente hacia abajo en los grupos

Efecto del par inerte

Energía de ionización I _n	C	Si	Ge	Sn	Pb
$I_1: M(g) \longrightarrow M^+(g) + e^-$	1086	786	760	707	715
I_2 : $M^+(g) \longrightarrow M^{2+}(g) + e^-$	2354	1573	1534	1409	1447
$I_3: M^{2+}(g) \longrightarrow M^{3+}(g) + e^{-}$	4621	3232	3300	2943	3087
$I_4: M^{3+}(g) \longrightarrow M^{4+}(g) + e^{-}$	6223	4351	4409	3821	4081
l ₃ + l ₄	10844	7583	7709	6764	7168

Como puede verse de la suma de las terceras (I_3) y cuartas (I_4) energías de ionización del plomo, éste cede sus electrones 6s aún con más facilidad que el germanio, el silicio o el carbono.

No obstante, estos elementos no manifiestan el efecto de par inerte mientras que el el plomo sí lo hace.

Efectos relativistas

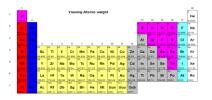
 Provocan contracciones del core y, por ende, alteran las distancias de enlace.

$$m = \frac{m_0}{\sqrt{1 - (v^2 / c^2)}}$$

m_o= masa en reposov= velocidadc= velocidad de la luz

La velocidad v de un electrón 1s en un átomo con carga nuclear +Ze está dada por:

$$V_{1s} = Z a c$$


a = 0.0073 (cte. de estructura fina, adimensional)

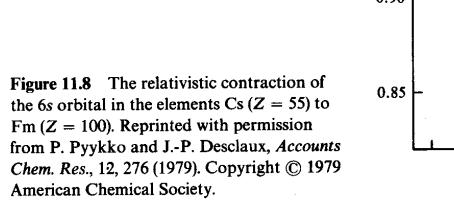
Por ejemplo: para un átomo como $_{82}$ Pb: v_{1s} = 0.0073 (82) c = **0.5986** c

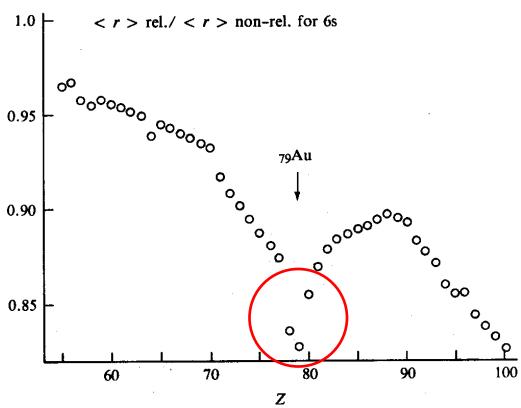
$$a_0 = \frac{\varepsilon_0 h^2}{\pi Z e^2 m}$$

 a_0 = radio atómico m= masa ε_0 = permitividad en el vacío h= cte. de Planck

... Efectos relativistas

- La contracción del enlace es particularmente significativa en los enlaces de átomos pesados como Au y Pt donde llega a ser del orden de 0.2 Å (20pm).
- Aún en compuestos de Cu llega a ser de 0.02-0.03 Å, es decir, superior a la incertidumbre de las distancias experimentales.
- Por ejemplo, la distancia de enlace M-H en AuH es menor que en AgH (1.52 vs 1.62 Å). Se ha propuesto que otras importantes propiedades de los elementos pesados como la conductividad eléctrica, el estado líquido del mercurio y el efecto del par inerte encuentran una componente importante en los efectos relativistas.




...más consecuencias

- La expansión relativista de los orbitales 5d contribuye a explicar porqué tungsteno forma hexacloruos covalentes más estables que los del cromo.
- La expansión de los 6d también apoya el hecho de que uranio forme UF₆ y UCl₆ mientras que neodimio ni siquiera presenta ese estado de oxidación.
- La contracción de los 6s explica la elevada electronegatividad de Au y Hg.
- El acoplamiento espín-órbita (J= I±½) tiene una componente relativista que afecta importantemente el orden de llenado de orbitales en átomos pesados así como sus propiedades de enlace.

Los metales nobles

Los metales nobles

• 78Pt: [Xe]4f14 5d9 6s1

₇₉Au: [Xe]4f¹⁴ 5d¹⁰ 6s¹

• 80Hg: [Xe]4f14 5d10 6s2

Estos elementos presentan contracción relativista de los 6s y, por lo tanto, separación de los 6p vacíos. Además los 5d presentan expansión relativista.

Hg con esta capa de valencia casi inexistente, parece comportarse como un gas noble o, mejor dicho, como un líquido noble. (Ver sus ΔH_{at} , I_0 y presión de vapor)

Los elementos del futuro

 Según los modelos actuales de estructura nuclear es posible que existan "islas de estabilidad" para núcleos con Z alrededor del 118.

1					I	UPAC	Perio	dic Tak	ole of	the Ele	ement	S				ĺ	18
H hydrogen 1.008 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	He helium 4.0026
3 Li lithium 6.94 [6.938, 6.997]	Be beryllium		Symbo name conventional atomic v standard atomic v	OI weight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine	10 Ne neon
11 Na sodium	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26,982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus	16 S sulfur 32.06 [32.059, 32.076]	17 CI chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
39.098 37 Rb rubidium	38 Sr strontium	44.956 39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	63.546(3) 47 Ag silver	48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	51 Sb antimony	78.971(8) 52 Te tellurium	[79.901, 79.907] 53 I iodine	54 Xe xenon
55 Cs caesium	87.62 56 Ba barium	88.906 57-71 Ianthanoids	91.224(2) 72 Hf hafnium	92.906 73 Ta tantalum	95.95 74 W tungsten	75 Re rhenium	76 Os osmium	102.91 77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium	82 Pb lead	83 Bi bismuth	127.60(3) 84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	137.33 88 Ra radium	89-103 actinoids	178.49(2) 104 Rf rutherfordium	180.95 105 Db dubnium	183.84 106 Sg seaborgium	186.21 107 Bh bohrium	190.23(3) 108 HS hassium	192.22 109 Mt meitnerium	195.08 110 DS darmstadtium	196.97 111 Rg roentgenium	200.59 112 Cn copernicium	[204.38, 204.39] 113 Nh nihonium	207.2 114 FI flerovium	208.98 115 MC moscovium	116 LV livermorium	117 Ts tennessine	118 Og oganesson

57 La lanthanum	58 Ce cerium	59 Pr praseodymium 140.91	60 Nd neodymium	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium 167.26	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
AC actinium	90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	No nobelium	103 Lr lawrencium

Tiempos de decaimiento

Table 12.1 Principal Isotopes of Transuranium Elements

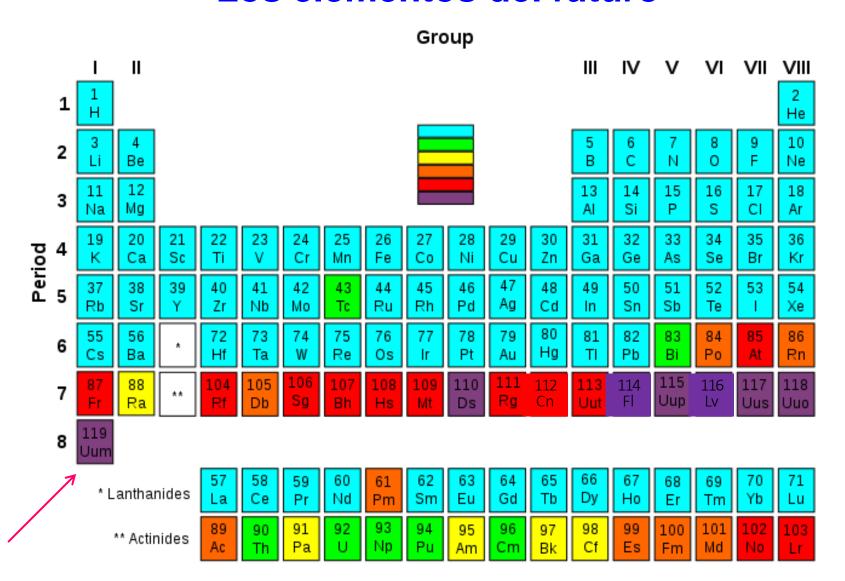
Isotope	Half-life	Quantities Available
²³⁷ Np	2,200,000 years	many kilograms
²³⁹ Pu	24,360 years	many kilograms
²⁴⁴ Pu	82,800,000 years	> 1 milligram
²⁴³ Am	7,650 years	> 100 grams
²⁴⁴ Cm	18.12 years	> 100 grams
²⁴⁷ Cm	16,000,000 years	traces
²⁴⁷ Bk	1,400 years	traces
²⁴⁹ Bk	314 days	> 1 milligram
²⁵¹ Cf	800 years	traces
²⁵² Cf	2.57 years	> 1 milligram
²⁵⁴ Es	276 days	> 1 milligram
²⁵⁷ Fm	94 days	> 0.001 milligram
²⁵⁸ Md	53 days	traces
²⁵⁵ No	3 minutes	traces
²⁵⁶ Lr	45 seconds	
²⁶¹ Rf	70 seconds	

Sources: Data from F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed., Wiley-Interscience, New York, 1980; and the Handbook of Chemistry and Physics, 50th ed., Chemical Rubber Co., Cleveland, 1969, pp. B-267 to B-561.

Estabilidad de los núcleos

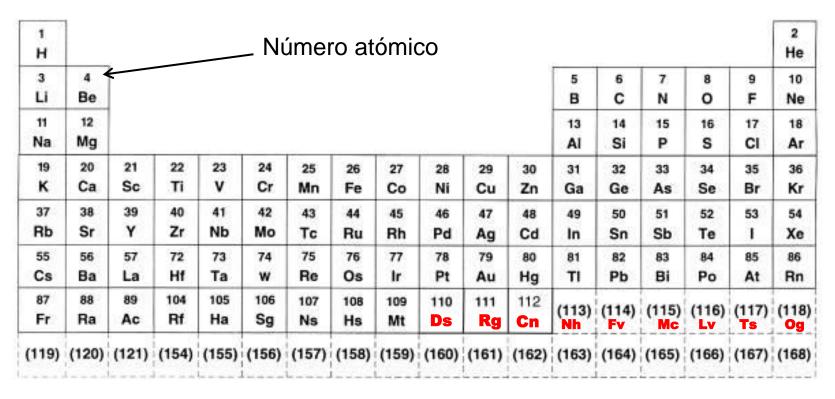
- Decaimiento α: emisión de un ⁴He. Z decrece.
- Decaimiento β⁻: emisión de un electrón (a veces junto con un fotón γ), resulta de la conversión de un neutrón en un protón. Z crece.
- Decaimiento β+: emisión de un positrón (e+), también provoca la conversión de un protón en un neutrón. Z decrece.
- EC: captura de un electrón (1s), provoca la conversión de un protón en un neutrón. Z decrece.

Elementos súperpesados

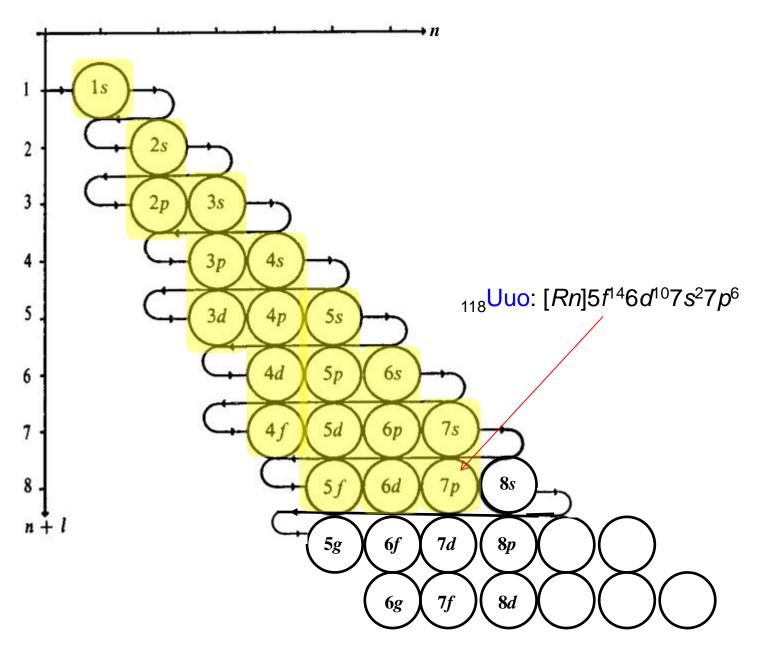

Números mágicos: 2, 8, 20, 28, 50, 82, 114p, 126n y 164p, 184n y 196n. ("islas de estabilidad") Los núcleos que tienen este número de protones o neutrones son más estables que los demás.

Resulta decepcionante que el elemento ²⁹⁸FI con114 protones y 184 neutrones no sea estable. El flerovio tiene una vida media de sólo 3 segundos.

Z	Desc.	lab.	Símbolo/Nombre	Reacción	t _{1/2} (s) (aprox.)
109	ago-1982	Darmstadt Alemania	Mt meitnerio	58 Fe+ 209 Bi → 268 Mt	3.7 ms
110	nov-94 ago-2003	Darmstadt Alemania	Ds darmstadtio	62 Ni+ 208 Pb \rightarrow 269 Ds	100 años (teo.) 17 μs
111	dic-1994 2003	Darmstadt Alemania	Rg roentgenio	⁶⁴ Ni+ ²⁰⁹ Bi → ²⁷² Uuu	3.6 seg
112	1996 ago-2009	Darmstadt Alemania	Cn copernicio	6?Zn + 208 Pb → 227 Cn	0.6 ms, 29 s
113		California EEUU	Nh nihonio		
114	1999 jun-2011	Dubna Rusia	FI flerovio	⁴⁸ Ca + ²⁴⁴ Pu → ²⁸⁹ FI	3 s
115	feb-2004	Dubna Rusia	Mc moscovio	48 Ca+ 243 Am → 288 Uup	100 ms
116	jun-2011	Dubna Rusia	Lv livermorio	48 Ca+ 248 Cm \rightarrow 292 Lv	47 ms
117	2010 may-2014	Rusia Darmstadt	Ts tenesino	⁴⁸ Ca+ ²⁴⁹ Bk → ²⁹⁴ Uus	¡ 80 ms !
118	¿ jun-1999 ?	California EEUU	Og oganeson		?



Los elementos del futuro



La tabla periódica del futuro

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

¿Cómo serán los Departamento de Química Dr. Significa elementos transactínidos o transférmicos?

- Es muy probable que manifiesten efectos relativistas aún mayores que los del 6º periodo.
- La mayor estabilidad de los electrones 7s² en el ₁₁₂Cp lo convertirán en el siguiente líquido noble.
- Posiblemente el ₁₁₄Fv con una configuración 7s² 7p_{1/2}² sea también un líquido.
- En el 8º periodo aparecerá el bloque g con 18 elementos.
- Los orbitales 5g no alcanzarán a los 8s y, por lo tanto, tendrán constantes de apantallamiento de 1, lo que provocará que esos elementos tengan igual tamaño, electronegatividad y una química común.
- Sin considerar los efectos relativistas se predice el orden de llenado siguiente: 8*s*<5*g*<6*f*<7*d*<8*p*.
- Si los efectos relativistas (SO) se toman en cuenta, puede ocurrir que el orbital 8p_{1/2} se llene justo después del 8s.
- Así, el elemento $_{119}$ Uum quedaría debajo del francio pero con una valencia de +4 debido a la facilidad del ionización de sus $7p_{3/2}$.

¿En dónde está la ciencia?

LA REALIDAD

- Los fenómenos
- La naturaleza de las sustancias

LA TEORÍA

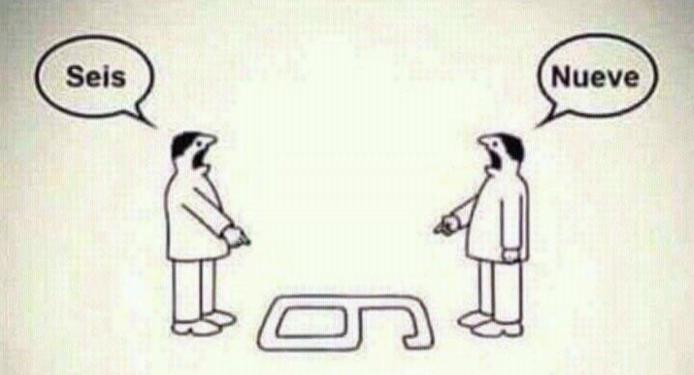
- La estructura atómica
- Los modelos de enlace
- La "contabilidad química"
- (estequiometría . . .)

EL LENGUAJE Y EL SIMBOLISMO

- Los símbolos de los elementos
- Las fórmulas
- La nomenclatura
- Las representaciones de Lewis
- Las ecuaciones químicas ...

Cortesía de la Dra. Laura Gasque

por ejemplo:


Modelos para explicar las propiedades de los compuestos covalentes (las teorías)

Compuestos covalentes (la realidad)

Conceptos asociados a los modelos de los compuestos covalentes:

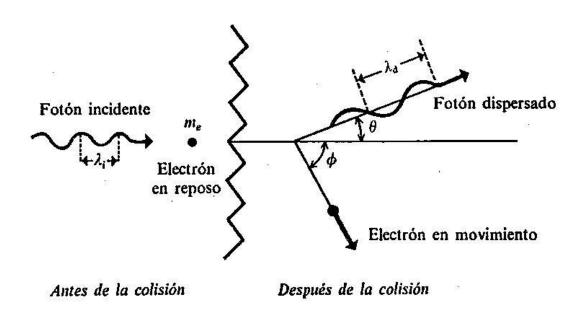
el enlace covalente (el lenguaje)

El hecho de que tengas razón, no quiere decir que estoy equivocado. Simplemente no has visto la vida desde mi lado.

Apéndice

Ver la primera tarea en AMyD:

http://amyd.quimica.unam.mx



Algunos temas

- Ondas
- Radiación de cuerpo negro
- Efecto fotoeléctrico
- Efecto Compton
- Cuantización del momento angular
- Evidencia de niveles de energía discretos
- Naturaleza ondulatoria de las partículas
- Difracción de electrones
- Experimento de la doble rendija en electrones

Efecto Compton y los fotones

Tomando en cuenta las ideas corpusculares de Einstein:

$$E_f = h \frac{c}{\lambda} \qquad \qquad p_f = \frac{h}{\lambda}$$

puede calcularse la diferencia de longitudes de onda como un problema de colisiones entre partículas.

$$\lambda_d - \lambda_i = \frac{h}{m_e c} (1 - \cos \theta)$$

Funciones ortonormalizadas

$$\Psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) \bullet Y_{l,m}(\theta,\phi)$$

$$\int \Psi^* \Psi \, \partial \tau = 1$$

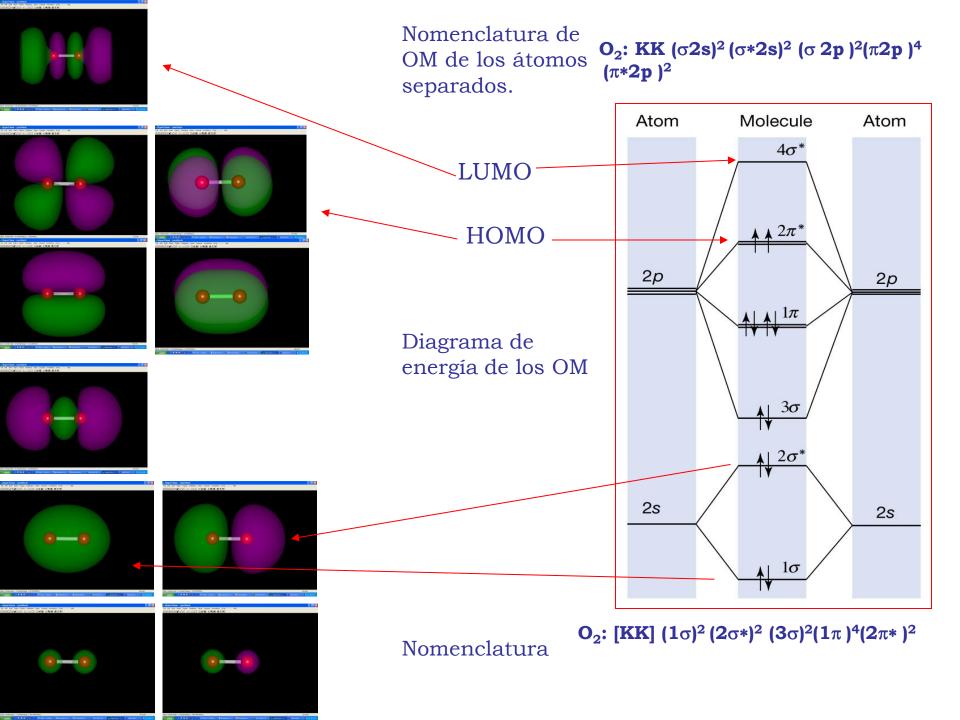
$$\int \Psi_{\rm m} \, \Psi_{\rm n} \, \partial \tau = 0 \quad (m \neq n)$$

$$\int \Psi_{\rm m} \, \Psi_{\rm n} \, \partial \tau = \delta_{m,n} \quad (\delta = delta \, de \, Kronecker)$$

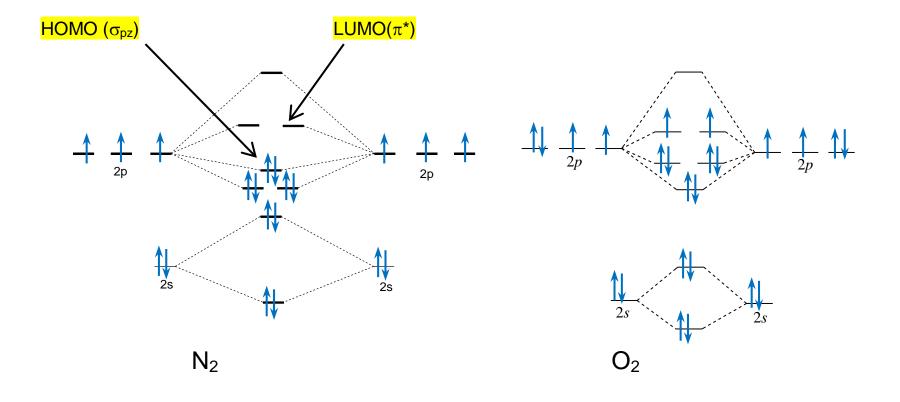
Espín orbitales


$$\Psi = \frac{1}{\sqrt{12}} \begin{vmatrix} \chi_1(1) & \chi_2(1) & \chi_3(1) \\ \chi_1(2) & \chi_2(2) & \chi_3(2) \\ \chi_1(3) & \chi_2(3) & \chi_3(3) \end{vmatrix}$$

3 electrones


$$\Psi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(1) & \chi_2(1) & \cdots & \chi_N(1) \\ \chi_1(2) & \chi_2(2) & \cdots & \chi_N(2) \\ \vdots & \vdots & & & \\ \chi_1(N) & \chi_2(N) & \cdots & \chi_N(N) \end{vmatrix} \qquad N \text{ electrones}$$

La evidencia experimental y el modelo


Oxígeno líquido entre los polos de un potente magneto

Nomenclatura de N_2 : [KK] $(\sigma 2s)^2 (\sigma * 2s)^2 (\pi 2p)^4 (\sigma 2p)^2$ OM de los átomos separados. **Atom** Molecule **Atom** $4\sigma^*$ LUMO $2\pi^*$ **HOMC** 3σ 11π Diagrama de energía de los OM $2\sigma^*$ 2s 2s 1σ N_2 : [KK] (1 σ)2 (2 σ *)2 (1 π)4 (3 σ)2 Nomenclatura

Orbitales moleculares

