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The rise and fall of artificial neural networks is well docu-

mented in the scientific literature of both computer science

and computational chemistry. Yet almost two decades later,

we are now seeing a resurgence of interest in deep learning, a

machine learning algorithm based on multilayer neural net-

works. Within the last few years, we have seen the transforma-

tive impact of deep learning in many domains, particularly in

speech recognition and computer vision, to the extent that

the majority of expert practitioners in those field are now reg-

ularly eschewing prior established models in favor of deep

learning models. In this review, we provide an introductory

overview into the theory of deep neural networks and their

unique properties that distinguish them from traditional

machine learning algorithms used in cheminformatics. By pro-

viding an overview of the variety of emerging applications of

deep neural networks, we highlight its ubiquity and broad

applicability to a wide range of challenges in the field, includ-

ing quantitative structure activity relationship, virtual screen-

ing, protein structure prediction, quantum chemistry, materials

design, and property prediction. In reviewing the performance

of deep neural networks, we observed a consistent outper-

formance against non-neural networks state-of-the-art models

across disparate research topics, and deep neural network-

based models often exceeded the “glass ceiling” expectations

of their respective tasks. Coupled with the maturity of GPU-

accelerated computing for training deep neural networks and

the exponential growth of chemical data on which to train

these networks on, we anticipate that deep learning algo-

rithms will be a valuable tool for computational chemistry.
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Introduction

Deep learning is the key algorithm used in the development

of AlphaGo, a Go-playing program developed by Google that

defeated the top human player in 2016.[1] The development of

computer programs to defeat human players in board games

is not new; IBM’s chess-playing computer, Deep Blue, defeated

the top chess player two decades ago in 1996.[2] Nevertheless,

it is worth noting that Go is arguably one of the world’s most

complex board game. Played on a 19 3 19 board, there are

approximately 10170 legal positions that can be played. Com-

pared to the complexity of Go, it has been estimated that the

Lipinski virtual chemical space might contain only 1060

compounds.[3,4]

Deep learning is a machine learning algorithm, not unlike

those already in use in various applications in computational

chemistry, from computer-aided drug design to materials

property prediction.[5–8] Amongst some of its more high pro-

file achievements include the Merck activity prediction chal-

lenge in 2012, where a deep neural network not only won the

competition and outperformed Merck’s internal baseline mod-

el, but did so without having a single chemist or biologist in

their team. In a repeated success by a different research team,

deep learning models achieved top positions in the Tox21 tox-

icity prediction challenge issued by NIH in 2014.[9] The unusu-

ally stellar performance of deep learning models in both

predicting activity and toxicity in these recent examples, origi-

nate from the unique characteristics that distinguishes deep

learning from traditional machine learning algorithms.

For those unfamiliar with the intricacies of machine learning

algorithms, we will highlight some of the key differences

between traditional (shallow) machine learning and deep

learning. The simplest example of a machine learning algo-

rithm would be the ubiquitous least-squares linear regression.

In linear regression, the underlying nature of the model is

known (linear in this context), and the input, otherwise known

as the features of the model are linearly independent to each

other. Additional complexity may be added to linear regression

by transforming out the original data (i.e., squaring, taking the

logarithm, etc.). As more of these nonlinear terms are added,

the expressive power of the regression model increases. This

description highlights three characteristics of traditional (shal-

low) machine learning. First, the features are provided by a

domain expert. In a process known as feature extraction and/

or engineering, various transformations, and approximations

are applied, this can be motivated from first principles, or may

be well-known approximations, or even educated guesses. Sec-

ond, shallow learning is template matching. It does not learn a

representation of the problem, it merely learns how to precise-

ly balance a set of input features to produce an output. Third,

its expressive power grows with the number of terms (i.e.,

parameters to be fitted), but it may require exponentially
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many terms if the nonlinear transformations are chosen poorly.

For example, a simple power series expansion will require an

extremely large amount of terms (and parameters) to fit func-

tions with large amounts of oscillations.

The mapping of features into an output using the function

provided is the task of a processing unit, and deep learning

algorithms are constructed from a collection of these process-

ing units, arranged in a layered and hierarchical fashion. There-

fore, unlike simpler machine learning algorithms, it maps

features through a series of nonlinear functions that are

stitched together in a combinatorial fashion to optimally maxi-

mize the accuracy of the model. As a result of this complex

architecture, a deep learning algorithm learns multiple levels

of representations that correspond to different levels of

abstraction, forming a hierarchy of concepts. By constructing

these so-called “hierarchical representations,” deep learning

has an internal state that may be transferred to new problems,

partially overcoming the template matching problem. Finally,

information can take many paths through the network, and, as

a result, expressive power grows exponentially with depth.[10]

Ultimately, these unique characteristics of deep learning ena-

bles it to utilize raw data directly as opposed to engineered

features, and often the resulting models constructed produce

a comparable level of predictive accuracy. Deep learning

achieves this ability because within the multiple layers of the

nonlinear functions, the algorithm transforms the raw data

and maps it to intermediate “output” that serve as input (fea-

tures) for the latter layers in the algorithm, in the process

gradually transforming raw data into learned features. In short,

deep learning algorithms are potentially capable of automati-

cally (i.e., without expert intervention) engineering the neces-

sary features that are relevant to optimally predict the output

of interest.

The majority of deep learning algorithms currently devel-

oped are based off artificial neural networks, and for the pur-

pose of this review we will focus on deep neural networks

exclusively. In the first half of this review, we will provide a

brief nontechnical introduction to deep learning, starting with

a basic background on artificial neural networks and highlight-

ing the key technical developments in the last decade that

enabled deep neural networks. In addition, we will focus on

how deep learning differs from traditional machine learning

algorithms that are used in computational chemistry, and how

the ongoing resurgence of deep learning differs from artificial

neural network models in the 1980s, which may be regarded

as its “parent” algorithm. In the next half of the review, we will

include a survey of recent developments of deep learning

applications across the field of computational chemistry, where

we will examine its performance against existing machine

learning models, and future prospects for contributing to the

field. This review was written primarily to serve as an introduc-

tory entry point for computational chemists who wish to

explore or integrate deep learning models in their research

from an applications standpoint, and additional references to

existing literature reviews will be provided to cover the more

technical aspects of deep learning neural network architecture

and optimization.

Deep Learning 101

Artificial neural networks (ANNs), on which most deep learning

algorithms are based on, are a class of machine learning algo-

rithm inspired by biological neural networks, used to estimate

or approximate functions by translating a large number of

inputs into a target output (Fig. 1a). ANNs are constructed

from a series of layers, and each layer comprises many

“neurons.” Each neuron accepts an input value from the previ-

ous layer, and maps it onto a nonlinear function. The output

of this function is used as the input for the next layer in the

ANN, until it reaches the last layer, where the output corre-

sponds to the objective that is to be predicted. In addition, a

tunable parameter, the “weight” (or coefficient) of each

Figure 1. a) Schematic representation of a traditional feedforward artificial neural network (ANN) with one hidden layer. Each neuron denoted as circles

accepts a series of n input values and maps it to an output using a nonlinear function, with a bias term (i.e., output of the neural network when it has

zero input) applied to all neurons in the hidden layer. b) Deep neural network (DNN) differ from ANN by having multiple (n> 3) hidden layers as depicted

in the schematic diagram, the bias term is omitted here for simplicity.
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neuron’s function is adjusted in the construction of this model

to minimize the error of the predicted value, a process known

as “training” the neural network. Figuratively, the collection of

these neurons in ANNs mimics the way neurons work in bio-

logical systems, hence its name, artificial neural network.

The power of ANNs, as hinted earlier, lies in their ability to

make multiple nonlinear transformations through many hidden

layers of neurons, where the “hidden” term refers to layers

that are not directly adjacent to the input or output. In this

process, increasingly complex and abstract features can be

constructed, through the addition of more layers and/or

increasing the width of layers (i.e., increasing the number of

neurons per layer). Correspondingly, the model can learn

increasingly complex and abstract representations (i.e.,

“concepts” if the term is used loosely). However, for one to

use more than a single hidden layer, it is necessary to deter-

mine how to assign error attribution and make corrections to

its weights by working backwards originating from the pre-

dicted output, and back through the neural network. This

backwards propagation of errors is known formally as

“backpropagation.” Although the conceptual foundation of

backpropagation was discovered in 1963,[11] it was not until

1986 that Hinton and coworkers discovered a way for this

algorithm to be applied to neural networks,[12] which was a

key historical development that enabled practically usable

ANNs.

During the process of backpropagation, an algorithm known

as gradient descent is used to find the minimum in the error

surface caused by each respective neuron when generating a

corresponding output. Conceptually, gradient descent is no

different from the steepest descent algorithm used in classical

molecular dynamics simulation. The major difference is instead

of iteratively minimizing an energy function and updating

atomic coordinates for each step, an error function of the tar-

get output of the ANN is iteratively minimized and the

weights of the neurons are updated each step, which are also

known as “iteration” in the ANN literature. The data in the

training set may be iterated over multiple times, with a com-

plete pass over the data being called an “epoch.”

A key issue with backpropagation is that the error signals

become progressively more diffused as the signal goes back

through each hidden layer. This is because, as the signal goes

deeper into the model, an increasing number of neurons and

weights are associated with a given error. Until recently, this

made it difficult to train many layers efficiently; anything more

than a few layers required a long time to converge with a

high probability of overfitting, especially for the layers closest

to the output. In addition, the nonlinear transformation func-

tions, such as sigmoids, had finite dynamic range, so error sig-

nals tends to decay as they passed through multiple layers,

which is more commonly known as the “vanishing gradient

problem.”[13]

Since 1986, several key algorithms, including unsupervised

pretraining,[14] rectified linear functions,[15] and dropout,[16]

have been developed to improve the training process for

ANNs, to address the vanishing gradient problem, and to

reduce overfitting which ANNs are particularly susceptible to.

Perhaps the largest impediment to training deep neural net-

works (DNN), was the vanishing gradient problem as it practi-

cally capped the depth of the neural network. Pretraining,

discovered by Hinton et al. in 2006 is a fast, greedy, algorithm

that uses an unsupervised layer-wise approach to train a DNN

one layer at a time.[14] After the pretraining phase is complete,

a more subtle fine-tuning process, such as stochastic gradient

descent, is used to train the model. Using the pretraining

approach, the model would have already learnt the features

before backpropagation begins, mitigating the vanishing gra-

dient problem. An alternative solution emerged in 2011, where

Bengio and coworkers demonstrated that the rectified linear

activation (ReLU) function sidesteps the vanishing gradient

problem entirely. The ReLU’s first derivative is precisely unity

or 0, generally ensuring that error signals can back-propagate

without vanishing or exploding. (Fig. 2).[15]

As these methods enabled the training of deeper and more

complex neural network architecture, overfitting also became

more of an issue, which led to the development of the drop-

out algorithm. In dropout, for each epoch of the training pro-

cess, a fixed proportion of neurons are randomly selected to

be temporarily excluded from the model. The net effect of

dropout is that it simulates many different architectures during

training, which prevents codependency among neurons and

reduces overfitting.[16] While the architecture of modern DNNs

vary widely, a popular configuration is ReLU-based neural net-

works. When coupled with dropout and early stopping, such

Figure 2. Plot of a) sigmoidal and b) rectified-linear (ReLU) function (in blue) and their corresponding first derivative (in red). Unlike the sigmoidal function,

where its derivative varies with respect to the value of x, in the ReLU function, the first derivative is either 0 or 1. [Color figure can be viewed at wileyonli-

nelibrary.com]
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ReLU networks have often been enough to regularize the

model (i.e., prevent overfitting).[17]

Having provided a summary of the key developments in

ANNs and its associated algorithms, we note that it is by no

means comprehensive. In addition to the traditional feedfor-

ward DNN (Fig. 1b) that has been discussed thus far, more

recent developments include alternative architectures, notably

convolutional neural networks (Fig. 3a),[18,19] recurrent neural

networks (Fig. 3b),[19,20] and autoencoders (Fig. 3c) that have

been highly successful in computer vision and natural lan-

guage processing applications. A technical discussion of vari-

ous DNN architectures while informative to understanding the

deep learning literature, is beyond the scope of this review,

therefore, we refer our readers to the following prior publica-

tions summarizing this research topic.[21–24] By now, it should

be evident that ANNs itself are not a new invention. Indeed,

the mathematical algorithm for ANNs was developed by

McCulloch and Pitts in 1943,[25] and practically trainable ANNs

dates as far back to 1986, coinciding with invention of back-

propagation for neural networks by Rumelhart, Hinton, and

Williams.[12] Deeper neural networks beyond a few hidden

layers (Fig. 1b) was only achievable with more recent algorith-

mic developments in the last few years.[14–16] Therefore, how

is DNNs not just the mere rebranding of ANNs of the last cen-

tury, and how is it better than the traditional machine learning

algorithms that are already successfully used in various chem-

informatics applications?

Many decades of chemistry research has led to the develop-

ment of several thousand molecular descriptors that describe

a range of properties of conceivably any compound. Molecular

descriptors thus serve as features constructed using chemical

knowledge and intuition (i.e., domain expertise) that can be

used in traditional machine learning models, which have

achieved reasonable success in computational chemistry appli-

cations.[26–31] Traditional machine learning algorithms such as

linear regression and decision trees are intuitive and create

simple models that humans can understand. Nevertheless, as

we progress to the prediction of more complex properties

with nonlinear relationship, typically those associated with bio-

logical processes and materials engineering, it is often

Figure 3. a) Schematic diagram of a convolutional neural network (CNN). CNNs are designed with the explicit assumption that the input is in the form of

image data. Each convolutional layer extracts and preserves the spatial information and learns a representation which is then typically passed onto a tradi-

tional fully connected feedforward neural network before the output layer. b) Schematic diagram of a recurrent neural network (RNN). RNNs at its simplest

implementation are a modification of the standard feedforward neural network where each neuron in the hidden layer receives an additional input from

the output from the previous iteration of the model, denoted as “t 2 1” circular arrows. c) Schematic diagram of an autoencoder, which are neural net-

works used in unsupervised learning. In autoencoders, the objective is to learn the identity function of the input layer, and in the process, a compressed

representation of the original data in the hidden layers is learned.
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necessary to rely on more sophisticated and less transparent

algorithms such as support vector machines (SVM) and ran-

dom forests (RF) to achieve an acceptable level of predictive

accuracy. At a first glance, deep learning algorithms falls under

the latter category, but it has one major difference. Unlike

SVMs and RFs, DNNs transform inputs and reconstruct them

into a distributed representation across the neurons of the

hidden layers. With appropriate training methods, different fea-

tures will be learned by the neurons in the hidden layers of

the system; this is referred to as automatic feature extraction.

As each hidden layer becomes the input for the next layer of

the system and nonlinear transformations can be applied

along the way, it creates a model that progressively “learns”

increasingly abstract, hierarchical and deep features.

Automatic feature extraction, a process that requires no

domain knowledge, is therefore one of the most significant

benefits of a deep learning algorithm. This is unlike traditional

machine learning algorithms, where a model must be carefully

constructed with the “correct” features based off chemical

knowledge and intuition for it to perform and generalize well.

It is for this reason, that deep learning has become the domi-

nant algorithm used in speech recognition[32] and computer

vision[18,33–35] today. ImageNet is an annual assessment and

competition of various algorithms for image classification. Prior

to deep learning, the state-of-the-art models employed hov-

ered in the 25–30% error rate, which falls short from the ideal

goal of matching a trained human error rate of 5.1%.[36] In

2012, deep learning algorithms were first introduced to this

community by Hinton and coworkers,[18] and their DNN-based

model achieved a 16.4% error rate. That was a significant

improvement from established models in computer vision at

that time, and the second-best performing model based off

traditional machine learning algorithms only achieved a 26.2%

error rate. Subsequent improvements in DNN-based models

eventually achieved an error rate of under 5.0%, exceeding

human performance in 2015 (Fig. 4), which was only 3 years

after deep learning made its introduction to the computer

vision field.[33,34] For practitioners in these field, the impact of

deep learning and its automatic feature extraction ability has

been transformative, not only in its ability to exceed “glass

ceiling” expectations in the field, but also the remarkably short

time it has taken to achieve it. In recent years, deep learning

has also demonstrated promise in other disciplines outside the

computer science domain, including high-energy particle phys-

ics[38] and bioinformatics.[39]

An equally important aspect of deep learning that has not

been discussed is the role of non-algorithmic developments

over the years. Specifically, the availability of “big data” and

the GPU hardware technological advances that were both

absent in the last century have created a confluence of events

that makes the advent of DNNs different from the ANNs of the

last century. The seminal work in 2012 that is most widely

regarded as the paper that propelled deep learning in the

limelight was Hinton’s AlexNet paper.[18] While algorithmic

developments, notably dropout contributed to its success, the

availability of a much larger dataset comprising of 1.2 million

images, compared to datasets of 10,000 images used in the

past, also played a critical role in its success. With the develop-

ment of deeper and larger neural networks, training time can

often extend to days or weeks. However, much like how the

field of computational chemistry has benefited from the rise of

GPU-accelerated computing,[40,41] this technology has also mit-

igated the training speed issues of DNNs.

Of the more practical considerations, the availability of

open-source code and documentation for training neural net-

works on GPUs is also arguably another reason for the rapid

proliferation of deep learning in recent years, including its

impact on academic research as evidenced by the exponential

growth of deep learning related publications since 2010 (Fig.

5a). Much like how the majority of the computational chemists

in modern times no longer write their own code to perform

molecular dynamics simulation or run quantum chemical cal-

culations, but instead rely on established software pack-

ages,[42–48] the deep learning research community has too

reach a similar level of maturity, with the current major soft-

ware packages for training neural networks including Torch,

Theano, Caffe, and Tensorflow. Perhaps the oldest of the four,

Torch was first released in 2002 as a machine learning scientif-

ic computing framework developed at NYU, but since then

deep learning libraries has been added.[49] Theano was the

first purposed-developed deep learning framework, released

by Benjio and coworkers at Universit�e de Montr�eal in 2008,[50]

and it has since developed into a community effort with over

250 contributors. This was closely followed with the release of

Caffe, developed by the Berkeley Vision and Learning Center

in 2014.[51] Most recently, Tensorflow,[52] which is developed

by Google was released in late 2015 has arguably gained a

surge of uptake in the deep learning community, as evidenced

Figure 4. Historical error rate of the best performing image classification

algorithms in the annual ImageNet competition.[37] Established models of

computer vision stagnated at 25–30%. The introduction of deep learning

in 2012 led to a significant improvement to �15%, and human-level accu-

racy (�5%) for image classification was achieved by 2015.
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from its spike in google search rankings (Fig. 5b), and the fact

that its Github has been starred and forked over 33,000 and

14,000 times, respectively, despite it being only released for a

little over a year. In addition, APIs, such as Keras released in

2015, has greatly simplified the construction and training of

neural networks, which has significantly reduced the barrier of

entry for new deep learning practitioners.

Unquestionably, the computer science domain has been the

main benefactor of the surge of mineable data obtained from

the internet (Fig. 6a), and not surprisingly has also been the

Figure 5. Growth of a) deep learning publications as indexed by ISI, and b) annual google trends score of major deep learning software packages since

2010. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. The growth of a) global data generated, b) number of structures deposited in the Protein Data Bank, c) number of compounds deposited in Pub-

Chem, and d) GPU computing power for scientific computing (GPU computing power data points were obtained from the reported double-precision com-

puting power of NVIDIA Tesla Series GPUs for the flagship model released each year: C2070 (2010), M2090 (2011), K20 (2012), K40 (2013), K80 (2014), P100

(2015)), all share similar parallels in their upwards trajectory.
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field where deep learning had the largest impact. In chemistry,

we have also seen a corresponding growth of data in publical-

ly accessible databases, such as the Protein Data Bank (Fig. 6b)

and PubChem (Fig. 6c), with more data being generated from

recent developments in high-throughput omics technolo-

gies.[53] It is for these reasons that we are optimistic that the field

of computational chemistry is starting to experience the same

confluence of events, and this will greatly facilitate deep learning

applications in our field. We can leverage on the algorithmic

breakthroughs in the computer science domain, the increasing

availability of chemical data, and the now matured GPU-

accelerated computing technologies [Fig. 6d; GPU computing

power data points were obtained from the reported double-

precision computing power of NVIDIA Tesla Series GPUs for the

flagship model released each year: C2070 (2010), M2090 (2011),

K20 (2012), K40 (2013), K80 (2014), P100 (2015)].

Computer-Aided Drug Design

In computer-aided drug design, traditional machine learning

algorithms have a long history in the field of cheminformatics,

notably in their contribution to quantitative structure activity

relationship (QSAR) applications. In QSAR, the output to be

predicted is usually the biological activity of a compound. Usu-

ally regression models are used, and the input data are molec-

ular descriptors, which are precomputed physicochemical

properties of the molecule, designed from chemistry domain

knowledge. Early work in QSAR applications used linear regres-

sion models, but these were quickly supplanted by Bayesian

neural networks,[54–56] followed by RFs[26] and SVMs.[31] Practi-

tioners in the field have historically favored models that allow

for variable selection so that an informed chemist can deter-

mine if selected features made sense. In addition, models that

allowed assessment of uncertainty of output predictions were

also preferred. The field of QSAR is vast, and we refer readers

to the following list of reviews for key historical technical

developments.[57–60] For the purpose of this review, we will

limit the scope of discussion to the performance of DNN-

based QSAR models and appropriate comparisons to tradition-

al machine learning models.

The first foray of deep learning into QSAR was the Merck

challenge in 2012.[61] In this publically available challenge,

teams were provided precomputed molecular descriptors for

compounds and their corresponding experimentally measured

activity for a total of 15 drug targets. Submitted models were

evaluated on their ability to predict activity against a test set

not released to participants. The winning group used DNN

models, led by Dahl who was part of Hinton’s research

team.[61] Notably, it should be emphasized that the team had

no formally trained computational chemist in the group; they

were from the computer science department.

In 2014, Dahl et al., submitted an arxiv paper exploring the

effectiveness of multitask neural networks for QSAR applica-

tions, based on the algorithms used in the Merck challenge.[62]

In this work, the authors used a multitask DNN model. Here,

“multitask” refers to a model that predicts not just a single

output of interest, but multiple outputs simultaneously, which

in their case was the results from 19 assays. The dataset used

was curated from PubChem and included over 100,000 data

points. Molecular descriptors totaling 3764 descriptors per

molecule were generated using Dragon,[63] and they were

used as the input features for the DNN. In an accuracy perfor-

mance benchmark against other traditional machine learning

algorithms, such as gradient-boosted decision trees and logis-

tic regression, the DNN-based model outperformed all others

in 14 of 19 assay predictions by a statistically significant mar-

gin and was comparable in terms of performance in the

remaining 5 assay prediction.[62] In addition, the advantages of

a multitask neural network was noted by the authors, particu-

larly in the fact that it develops a shared, learned feature

extraction pipeline for multiple tasks. This means that not only

can learning more general features produce better models,

but weights in multitask DNNs are also constrained by more

data cases, sharing statistical strength.[62] Lastly, an interesting

observation from that study was how DNNs were able to han-

dle thousands of correlated input features, which goes against

traditional QSAR wisdom as highlighted by Winkler in 2002,[64]

although we note that the observations published by Winkler

at that time was prior to the development of DNNs. In Dahl’s

work, the authors observed that halving the input features did

not led to any performance degradation.

A subsequent study in 2015 published by Merck, compre-

hensively analyzed the training of DNNs and compared their

performance to the current state of the art used in the field,

RF-based models, on an expanded Merck challenge dataset.[65]

The authors concluded that DNNs could be adopted as a prac-

tical QSAR method, and easily outperformed RF models in

most cases. In terms of practical adoption, the authors empha-

sized the dramatic advance in GPU hardware that DNNs lever-

age and also the economic cost advantages of deploying GPU

resources as opposed to conventional CPU clusters that are

used by traditional machine learning models.[65] The key issue

associated with training deep neural networks, particularly in

the number of tunable parameters was also investigated. The

authors discovered that most single task problems could be

run on architectures with two hidden layers, using only 500–

1000 neurons per layer and 75 training epochs. More complex

architecture and/or longer training time yielded incremental

but diminishing returns in model accuracy.[65] Despite the

overall promising performance of DNNs in the Merck challenge

and associated studies as summarized above, the results were

received with skepticism by some practitioners in the research

community.[66] Common concerns include the small sample

size, and that the incremental improvements in predictive

accuracy was difficult to justify in the face of increase in model

complexity.

In 2014, Hochreiter and coworkers published a peer-

reviewed paper at the Neural Information Processing Systems

(NIPS) conference on the application of multitask DNNs for

QSAR application on a significantly larger dataset.[67] In this

study, the authors curated the entire ChEMBL database, which

was almost two orders of magnitude larger than the original

Merck challenge dataset. This dataset included 743,336 com-

pounds, approximately 13 million chemical features, and 5069
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drug targets. It is also interesting that the authors did not use

explicitly computed molecular descriptors as input data, but

rather used ECFP4 fingerprints[68] instead. The authors bench-

marked the accuracy performance of the DNN model across

1230 targets, and compared them against traditional machine

learning models, including SVMs, logistic regression and

others. It should be noted that gradient-boosted decision trees

which performed almost as well as DNNs in Dahl’s 2014 paper

was not included in this study. Nevertheless, it was demon-

strated that DNNs outperformed all models they tested on,

which also included two commercial solutions and three cur-

rently implemented solutions by pharmaceutical companies

(Fig. 7).[67] While most traditional machine learning algorithms

accuracy ranged from 0.7 to 0.8 AUC, DNNs achieved an AUC

of 0.83. Of the better performing models (AUC> 0.8), DNNs

also had the least severe outliers, which the authors hypothe-

sized was due to the DNN’s shared hidden representation that

enabled it to predict tasks which would be difficult to solve

when examined in isolation. In agreement with Dahl’s 2014

study, the use of a multitask DNN conferred two advantages:

(i) allowance for multilabel information and therefore utilizing

relations between tasks and (ii) allowance to share hidden unit

representations among prediction tasks.[67] The authors in this

study noted that the second advantage was particularly impor-

tant for some drug targets where very few measurements are

available, and thus suggested that a single target prediction

may fail to construct an effective representation.[67] The use of

multitask DNNs partially mitigates this problem, as it can

exploit representations learned across different tasks and can

boost the performance on tasks with fewer training examples.

Moreover, DNNs provide hierarchical representations of a com-

pound, where higher levels represent more complex concepts

that would be potentially more transferable beyond the train-

ing set data.[67]

A similar large scale study was submitted to arxiv in 2015

by the Pande group and Google.[69] In this study, about 200

drug targets were identified, but significantly more data points

(40 million) were included. Unlike the earlier NIPS paper, Pande

and coworkers focused their investigation on the effectiveness

of multitask learning in DNNs rather than the performance of

the DNN model itself. The authors curated a database that

was combined from multiple sources of publicly available data,

including PCBA from the PubChem Database,[70] MUV from 17

challenging datasets for virtual screening,[71] DUD-E group,[72]

and the Tox21 dataset.[73] As with Hochreiter and coworkers,

the molecules were featurized using ECFP fingerprints, and no

explicit molecular descriptors were computed. Amongst the

key findings, was that multitask performance improvement

was consistently observed, although it was not evident wheth-

er additional data or additional tasks had a larger effect in

improving performance.[69] The authors also observed limited

transferability to tasks not contained in the training set, but

the effect was not universal and required large amounts of

data when it did work successfully, which partially reinforces

the claims of multitask learning advantages proposed by

Hochreiter and Dahl.[62,67] Curiously, the multitask improve-

ment varied in degree from one dataset to another, and no

satisfactory explanation was provided. Nevertheless, the con-

sistent outperformance of multitask DNNs against traditional

machine learning models such as logistic regression and RF

was evident (Fig. 8), where the performance lift in AUC ranges

from 0.02 to 0.09.[69]

To date, there have been at least four reported applications

of DNNs for QSAR, with consistent observations that deep

learning outperforms traditional machine learning counter-

parts. However, all of the studies have, thus, far mostly focused

on biological activity prediction. Conceptually, DNNs should

have similar performance in predicting other properties of

interest, which may include ADMET properties, as well as

applications in other parts of computer-aided drug design,

such as in virtual screening.

Drug-induced liver injury (DILI) is the most frequent cause

of safety-related drug withdrawals over the last five deca-

des.[74] Mechanisms underlying DILI are complicated and

diverse, drugs that cause DILI in humans are not easily probed

Figure 7. Performance accuracy (in terms of AUC metrics) of deep neural

network against several traditional machine learning algorithms, including:

support vector machines (SVM), logistic regression (LR), k-nearest neighbor

(k-NN) and commercially implemented solutions (Pipeline Pilot Bayesian

Classifier, Parzen–Rosenblatt KDE-based approach and Similarity Ensemble

Approach, respectively) for activity prediction of a curated database

obtained from ChEMBL.[67]

Figure 8. Consistent performance lift in accuracy (in terms of AUC metrics)

was observed across 3 different databases (PCBA, MUV, Tox21) when using

multitask deep neural networks (MT-DNN) as compared to logistic regres-

sion (LR), random forest (RF), and single-task neural network (ST-NN).[69]

[Color figure can be viewed at wileyonlinelibrary.com]
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by conventional means, making toxicological studies of DILI

difficult. A recent study from Xu et al. used DNNs to predict

DILI toxicity.[75] The authors used both explicit molecular

descriptors, computed from Mold[76] and PaDEL,[77] as well as

the URGNN method for molecular structuring encoding devel-

oped by Lusci et al.[78] as input data for the DNNs. The model

was trained on 475 drugs, with an external test set of 198

drugs, and the best model that utilized a DNN had accuracy of

86.9%, sensitivity of 82.5%, specificity of 92.9%, and AUC of

0.955.[75] In comparison, traditional models have lower abso-

lute performance metrics by 10–20%.[75] Interestingly, using

input from the URGNN molecular structural encoding method,

the authors created a model with the highest performance

(AUC 0.955), outperforming similarly trained DNNs that used

calculated molecular descriptors from Mold (AUC 0.931) and

PaDEL (AUC 0.895).[75] This suggests that a good molecular

encoding method such as UGRNN may be more effective in

providing the necessary features to DNNs, as deep learning

algorithms have the ability to automatically extract the neces-

sary features, and this ability may be on par or perhaps even

better than domain-expert feature engineering through the

development of explicit molecular descriptors.

Another application for DNN modeling toxicity was pub-

lished by Swamidass and coworkers in 2015.[79] One common

mechanism of drug toxicity stems from electrophilic reactive

metabolites that covalently bind to proteins. Epoxides are a

functional group of this nature, which are often formed by

cytochrome P450 metabolism of drug molecules, which acts

on aromatic or double bonds. Swamidass and coworkers

results were particularly distinctive, because they developed a

DNN model to predict the specific location on a molecule that

undergoes epoxidation, that is, its site of epoxidation (SOE).

This work was based off an earlier model, Xenosite, an ANN-

based model for P450 metabolism on small-molecules, which

despite being a shallow network, was already outperforming

the accuracy of SVM-based models by as much as 5%.[80] Fur-

ther improvements were subsequently achieved by investigat-

ing the effect of using different types of molecular fingerprints

for modeling P450 metabolism, where they discovered that

further accuracy gains can be achieved using a consensus

model utilizing different fingerprint types,[81] and a related sis-

ter model that predicted the site of glucoronidation metabo-

lism.[82] In their more recent work on predicting epoxide-based

toxicity, Swamidass and coworkers designed a 4-layer DNN

architecture, and trained the model on a database of 702

epoxidation reactions, and identified SOEs with 94.9% AUC

performance, and separated (i.e., classified) epoxidized and

non-epoxidized molecules with 79.3% AUC.[79] Moreover, with-

in epoxidized molecules, the model was able to provide

atomic-level precise information, by separating aromatic or

double bond SOEs from all other aromatic or double bonds

with AUCs of 92.5% and 95.1%, respectively.[79] This makes the

DNN model the first mechanistic model in the literature, which

not only predicts the formation of reactive epoxides of drug

candidates but also accurately identifies the specific epoxi-

dized bonds in the molecule. Using a similar DNN model, Swa-

midass and coworkers modeled the site of reactivity of small-

molecules toward soft nucleophiles such as gluthaione

(GSH).[83] By training only on qualitative reactivity data, they

were able to construct a DNN-based model that identified

sites of reactivity within reactive molecules with 90.8% accura-

cy, and separate reactive and unreactive molecules with 80.6%

accuracy.[83] In addition, the model’s predictions correlated

well with quantitative GSH reactivity measurements in external

data sets that were more chemically diverse, indicating the

model’s generalizability across a larger area of chemical

space.[83] A subsequent publication expanded the scope of the

model to encompass reactivity toward GSH, cyanide, protein,

and DNA. The resulting model yielded a cross-validated AUC

performance of 89.8% for DNA and 94.4% for protein, and sep-

arated electrophilically reactive molecules with DNA and pro-

tein from nonreactive molecules with a cross-validated AUC

performance of 78.7% and 79.8%, respectively.[84] Furthermore,

the model’s performance also significantly outperformed reac-

tivity indices calculated from QM methods.[84] As drug toxicity

is often caused by electrophilic reactive metabolites, models

that assist in the study of identifying site reactivity, which has

been up to now conspicuously absent in the literature, can

potentially be utilized to construct a mechanism-based predic-

tion of molecule toxicity.

A larger scale study on chemical toxicity was also recently

published by the Hochreiter group in 2016.[85] In this work,

the authors reported on the application of DNN models on

the Tox21 Data Challenge released by NIH in 2014. The data-

base consisted of 12,000 environmental chemicals and drugs,

and their corresponding measurements on 12 different assays

designed to measure a variety of toxicity effects. Not surpris-

ingly, the DeepTox model developed by Hochreiter and cow-

orkers had the highest performance of all methods submitted

to the Tox21 challenge.[9] Further analysis of their model indi-

cated that using a multitask DNN model led to consistent out-

performance against single-task models in 10 out of 12 assay

predictions.[85] Additional benchmarks to traditional machine

learning algorithms, including SVM, RF, and Elastic Net, also

demonstrated that DNN outperformed in 10 out of 15

cases.[85] Lastly, while the original DeepTox model used molec-

ular descriptors provided by NIH in the Tox21 challenge, the

authors also showed that a similarly trained DNN model devel-

oped using only ECFP4 fingerprint as input data had similar

performance to those trained on explicit molecular descriptors,

which is similar to the observations made by Xu et al. in their

DILI toxicity model.[75] Interestingly, on visualization of the first

hidden layer of these DNNs, the author observed that 99% of

neurons in that layer had a significant association with at least

one known toxicophore feature, suggesting that deep learning

can possibly support the discovery of new chemical knowl-

edge in its hidden layers.[85]

In line with the progress in QSAR and toxicity prediction,

deep learning algorithms have also started to make an impact

in other aspects of computer-aided drug design. In 2013, Baldi

and coworkers reported using a DNN model to predict mole-

cule solubility.[78] More recent research developments in this

direction was also submitted to arxiv by Pande and coworkers,

where they developed a multitask DNN model for predicting
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not just solubility, but the entire spectrum of ADMET proper-

ties.[86] Deep learning may also have a future in virtual screen-

ing as a viable alternative or complement to existing docking

methods. In 2016, an arxiv paper was submitted by AtomNet,

a startup that developed a DNN model to classify the activity

of small molecules docked in protein binding pockets.[87]

Remarkably, the AtomNet DNN model was able to achieve

AUC metrics ranging between 0.7 to 0.9 depending on the

test set used, which significantly outperforms conventional

docking methods, specifically Smina,[88] a fork of AutoDock

Vina[89] by 0.1 to 0.2.[87] For additional recent developments of

deep learning in applications that are more closely aligned to

computational biology, we refer our readers to the following

reviews that focuses on that research topic.[90]

Computational Structural Biology

Predicting the spatial proximity of any two residues of a pro-

tein sequence when it is folded in its 3D structure is known as

protein contact prediction. The prediction of contacts between

sequentially distinct residues thus imposes strong constraints

on its 3D structure, making it particularly useful for ab initio

protein structure prediction or engineering. While the use of

physics-based simulation methods, such as long-timescale

molecular dynamics[91,92] can be used for ab initio protein

structure prediction, the computational demands are formida-

ble. Complementary methods, such as knowledge-based physi-

cal approaches developed by the groups of Wolynes, Onuchic

and others are also an option,[93,94] although their computa-

tional expense while lower is still sufficiently demanding that

it cannot be used for large-scale studies. Therefore, machine

learning approaches are viable alternatives, including those

based off ANNs,[95–97] SVMs,[27] and hidden Markov model.[98]

Other approaches include template-based approaches that use

homology or threading methods to identify structurally similar

templates to base an inference of protein contact predic-

tion.[99,100] The assessment of these various models for contact

predictors is one of the highlights of the critical assessment of

protein structure prediction (CASP) challenge which started in

1996. Despite improvements over the years, the long-range

contact prediction has historically hit a glass ceiling of just

below 30% accuracy. The key historical developments of com-

putational protein structure prediction is voluminous, and we

refer interested readers to existing reviews on this top-

ic.[101–104] For the purpose of this review, we will limit the

scope of discussion to the performance of recent DNN-based

models, and how they have been critical to breaching the his-

torical glass ceiling expectations in the field.

In 2012, Baldi and coworkers developed CMAPpro, a multi-

stage machine learning approach, which improved contact

prediction accuracy to 36%.[105] Three specific improvements

were implemented in CMAPpro over earlier models. The first is

the use of a 2D recursive neural network to predict coarse

contacts and orientations between secondary structure ele-

ments. In addition, a novel energy-based neural network

approach was used to refine the prediction from the first net-

work and used to predict residue-residue contact probabilities.

Lastly, a DNN architecture was used to tune the prediction of

all the residue–residue contact probabilities by integrating spa-

tial and temporal information.[105] CMAPpro was trained on a

2356-member training set derived from the ASTRAL data-

base.[106] For cross-validation purposes, the set was segmented

into 10 disjoint groups belonging to different SCOP fold, which

meant that neither training nor validation set shared sequence

or structural similarity. The resulting model performance was

then tested against a 364-member test set of new protein

folds reported between version 1.73 and 1.75 release of the

ASTRAL database. CMAPpro performance was compared

against several permutations of the multistage machine learn-

ing model, including a single hidden layer neural network

(NN), a single hidden layer neural network that utilized the

coarse contact/orientation and alignment predictors, which is

generated by the 2D recursive neural network and the energy-

based neural network (NN 1 CA), and a deep neural network

but without CA features (DNN). Based on the relative perfor-

mance, both the deep network architecture and CA features

were required to achieve an accuracy of 36%; DNN and

NN 1 CA each achieved 32%, while NN which represents the

previous state-of-the-art only achieved 26% accuracy.[106]

A different implementation of DNN for protein contact pre-

diction was also reported by Eickholt and Cheng in 2012.[107]

In their algorithm, DNCON, it combined deep learning with

boosting techniques that was used to develop an ensemble

predictor. A 1426-member dataset derived from the Protein

Data Bank was used to train DNCON, with a random split

between the training (1230-member) and validation (196-

member) set. Explicitly engineered features were used as input

for the DNN. Specifically, three classes of features were used:

(i) those from two windows centered on the residue pair in

question (e.g., predicted secondary structure and solvent

accessibility, information and likelihoods from the PSSM, and

Acthley factors, etc.), (ii) pairwise features, (e.g., Levitt’s contact

potential, Jernigan’s pairwise potential, etc.), and (iii) global

features (e.g., protein length, percentage of predicted exposed

alpha helix and beta sheet residues, etc.).[107] Using these engi-

neered features, the DNN model was tasked to predict wheth-

er or not a particular residue pair was in contact. In addition,

boosted ensembles of classifiers was created by training sever-

al different DNNs using a sample of 90,000 long-range resi-

due–residue pairs from a larger pool obtained from the

training set. In evaluating its performance, cross-validated

accuracy of DNCON was 34.1%. The model’s performance

transferability was demonstrated in its performance bench-

marks against the two best predictors of CASP9,[108]

ProC_S3,[28] and SVMcon,[27] which are based off RF and SVM

algorithms, respectively. In that assessment, the respective test

set was used for each software. While the improvement was

not as dramatic as that reported by Baldi and coworkers,

DNCON performance was �3% better than the state-of-the-art

algorithms for its time; ProC_S3 (32.6% vs. 29.7%) and SVMcon

(32.9% vs. 28.5%).[107]

Both DNN-based protein contact prediction models were

noteworthy, as it enabled the community to breakthroughs

the 30% accuracy barrier that was not possible in prior years.
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Apart from protein contact prediction, DNNs have also been

successfully applied to the prediction of various protein angles,

dihedrals, and secondary structure from only sequence data.

Using DNNs, Zhou, Yang, and coworkers published a series of

sequence-based predictions for Ca-based angles and tor-

sions.[109–111] Unlike protein contact prediction, backbone tor-

sions are arguably better restraints for use in ab initio protein

structure prediction and other modeling purposes.[112] In the

development of these DNN-based models, Zhou, Yang, and

coworkers used a 4590-member training set and a 1199 inde-

pendent test set obtained from the protein sequence culling

server PISCES.[113] Input data included specifically engineered

features obtained from the position specific scoring matrix

generated by PSI-BLAST,[114,115] as well as several other physi-

cochemical properties related to residue identity, including ste-

ric, hydrophobicity, volume, polarizability, isoelectric point,

helix probability, amongst others.[116]

In the development of the SPINE-X algorithm, a DNN was

used to predict secondary structure, residual solvent-accessible

surface area (ASA), u and w torsions directly.[110] A six-step

machine learning architecture was developed where outputs

such as ASA were used as subsequent inputs for other proper-

ties to be predicted, such as the torsions. Based on the evalua-

tion of the model’s performance on the independent test set,

it achieved a mean absolute error of 228 and 338, respectively,

for the u and w dihedrals. Secondary structure prediction

accuracy on independent datasets were ranging from 81.3%

to 82.3%, and this achievement is noteworthy, considering

that the field of secondary structure prediction from sequence

data has stagnated just under 80% accuracy in the recent

decade, some of which utilize traditional machine learning

algorithms.[117] In a similar fashion, for the SPIDER algorithm

that was developed later, a DNN was used to predict Ca
angles (h) and torsions (s) directly.[109] Based on the evaluation

of the model’s performance, it achieved a mean absolute error

of 98 and 348 for h and s, respectively, and the authors

observed that the model’s error increased from helical residues

to sheet residues to coil residues, following the trend in

unstructuredness. Using these predicted angles and torsions

as restraints, the authors were able to model the 3D structure

of the proteins with an average RMSD of 1.9A between the

predicted and native structure.[109] The SPINE-X and SPIDER

algorithm was subsequently retrained as a parallel multistep

algorithm that predicted simultaneously the following proper-

ties: secondary structure, ASA, u, w, h and s.[111] This resulted

in a modest improvement in overall accuracy of secondary

structure by 2%, and reduction of MAE by 1–38 for the angles/

torsions, while maintaining the same level of ASA

performance.

Apart from protein structure modeling, deep learning has

also been utilized to predict other properties of interest based

on sequence data. For example, predicting sequence specific-

ities for DNA- and RNA-binding proteins was recently

reported.[118,119] In the seminal work by Frey and cow-

orkers,[118] the DeepBind algorithm was developed to predict

the sequence specificities of DNA and RNA-binding proteins.

Using 12 terabases of sequence data, spanning thousands of

public PBM, RNAcompete, ChIP-seq, and HT-SELEX experi-

ments, the raw data was used as an input into a DNN algo-

rithm to compute a predictive binding score. DeepBind’s

ability to characterize DNA-binding protein specificity was

demonstrated on the PBM data from the revised DREAM5 TF-

DNA Motif Recognition Challenge by Weirauch et al.[120] Nota-

bly, DeepBind outperformed all existing 26 algorithms based

on Pearson correlations and AUC metrics, and was ranked first

amongst 15 teams in the DREAM5 submission.[118] Interesting-

ly, their results also indicated that models trained on in vitro

data worked well at scoring in vivo data, suggesting that the

DNNs has captured a subset of the properties of nucleic bind-

ing itself.

As with the repeated occurrence of deep learning outper-

forming traditional machine learning algorithms in other

fields,[18,32–35] as well as in computer aided drug design

itself,[62,67,69] the utilization of DNNs in pushing the “glass

ceiling” boundaries of protein contact prediction and second-

ary structure prediction should come as no surprise. Conspicu-

ously absent from this review is the application of deep

learning for RNA structure prediction and modeling, which to

the best of our knowledge has yet to be reported. Compared

to the protein database, available structural data on RNA is

smaller. Furthermore, most RNA structural data are not crystal-

lographic but are instead NMR-based, which itself is subjected

to a higher uncertainty by virtue of the fact that NMR-

structures themselves are approximations resolved using

physics-based force field against experimentally bounded

restraints.[121] Nevertheless, it will be interesting to see how

deep learning can benefit the RNA modeling community.

Lastly, an interesting contrast in the use of deep learning in

computational structural biology applications compared to

computer-aided drug design is the exclusive use of engineered

features, and for some cases, the engineering of the architec-

ture of the multistage machine learning algorithm itself. While

the findings from the computer-aided drug design field is pre-

liminary, there are some indications that explicitly engineered

features do not necessarily perform better against chemical

fingerprints, which arguably require less chemical domain

knowledge to construct. While we concede that proteins are

considerably more complex than small molecules, it would be

interesting to determine if the performance of DNN models

that uses input data that includes only basic structural and

connectivity information, without any specifically engineered

features, can accurately predict properties such as protein sec-

ondary structure, and long-range contacts.

Quantum Chemistry

Using machine learning to supplement or replace traditional

quantum mechanical (QM) calculations has been emerging in

the last few years. In this section, we will examine some

machine learning applications to quantum chemistry, and

examine the relative performance of similar DNN-based mod-

els. In 2012, von Lilienfeld and coworkers developed a

machine learning algorithm based on nonlinear statistical

regression to predict the atomization energies of organic
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molecules.[29] This model used a 7000-member subset of the

molecular generated database (GDB), a library of 109 stable

and synthetically tractable organic compounds. The target

data used for training was atomization energies of the 7000

compounds calculated using the PBE0 hybrid functional. No

explicit molecular descriptors were used as input data, instead

only the Cartesian coordinates and nuclear charge were used

in a “Coulomb” matrix representation. Arguably, without

explicitly engineered features, this type of representation in

the input data would be of the same level as that provided by

molecular fingerprints used in classical molecular modeling

approaches. Using only 1000 compounds for the training set,

von Lilienfeld and coworkers achieved a mean absolute error

(MAE) accuracy of 14.9 kcal/mol. Further tests on an external

6000 compound validation set yielded similar accuracy of 15.3

kcal/mol, demonstrating the transferability of the model within

“in class” compounds. What was particularly groundbreaking

about this work was the ability to reasonably recapitulate QM-

calculated energies, with a mean-absolute error of �15 kcal/

mol, without having any implementation of the Schrodinger

Equation in the machine learning algorithm at all. More impor-

tantly, considering that this work used a traditional machine

learning algorithm that lacks the advantages of DNN, and

based on DNN’s historical performance, it suggests that a

DNN-based model should perform even better.

A subsequent publication by Hansen et al. investigated a

number of established machine learning algorithms, and the

influence of molecular representation on the performance of

atomization energy predictions on the same dataset as used

in von Lilienfeld work.[122] Amongst the key findings was that

using a randomized variant of the “Coulomb matrix” greatly

improved the accuracy of atomization energies to achieve as

low a MAE as 3.0 kcal/mol.[122] Apart from being an inverse

atom-distance matrix representation of the molecule, the ran-

domized variant is unique and retains invariance with respect

to molecular translation and rotation. An added “side effect”

of this improved representation was that it was the richest

one developed, as it is both high-dimensional and accounting

for multiple indexing of atoms.[122] The authors discovered

that sorting various representation by information did yield a

correspondingly lower accuracy across all machine learning

algorithms tested,[122] which highlighted the importance of

good data representation in QM applications. In fairness, it

should also be noted that the authors did benchmark ANNs,

and while they performed satisfactorily with a MAE of 3.5 kcal/

mol, it was not considerably better than nonlinear regression

methods of MAE of 3.0 kcal/mol. Nevertheless, we highlight

the neural network used was “shallow” with a few layers, and

together with the lack of a larger dataset, does not represent

a true DNN implementation. One particularly illuminating con-

jecture from this article is by extrapolating the performance

(MAE error) with respect to the size of the dataset used, the

authors concluded that 3 kcal/mol was probably the “baseline”

error that one could achieve regardless of the machine learn-

ing algorithm used.[122]

In 2013, von Lilienfeld reported the application of the first

multitask DNN model that not only predicted atomization

energies, but several other electronic ground and excited state

properties.[123] In this work, they attempted to capitalize on

the advantages of multitask learning, by predicting several

electronic properties and potentially capturing correlations

between seemingly unrelated properties and levels of theory.

The data was represented using the randomized variant of the

“Coulomb matrix.”[122] The target data was atomization ener-

gies, static polarizabilities, frontier orbital eigenvalues HOMO

and LUMO, ionization potential, and electron affinity calculated

using several different level of theory such as PBE0, ZINDO,

GW, and SCS. The atomization energy maintained a similar

accuracy of MAE of 0.16 eV (�3.6 kcal/mol) and achieved com-

parable accuracy of MAE of 0.11 to 0.17eV (�2.5 to 3.9 kcal/

mol) for the other energy predictions, including HOMO, LUMO,

ionization potential, and electron affinity.[123] Furthermore, this

level of accuracy was similar to the error of the corresponding

level of theory used in QM calculations for constructing the

training set.

While using machine learning algorithms to replace QM cal-

culations is enticing, an alternative more “first principles

grounded” approach is to use machine learning algorithms to

supplement existing QM algorithms. As first reported by von

Lilienfeld and coworkers in 2015, they demonstrated the D-

learning approach, whereby a machine learning “correction

term” was developed.[124] In that study, the authors used DFT

calculated properties and were able to predict the correspond-

ing quantity at the G4MP2 level of theory using the D-learning

correction term. This composite QM/ML approach combines

approximate but fast legacy QM approximations with modern

big-data-based QM estimates trained on expensive and accu-

rate results across chemical space.[124] However, we noted that

this approach has thus far been only demonstrated using tra-

ditional machine learning algorithms. If the performance boost

using multitask DNNs that we have observed on numerous

instances applies to this example, a DNN-based approach

would potentially yield superior results, but that has yet to be

reported in the literature.

To the best of our knowledge, the fewer examples of DNN

in quantum chemistry applications seem to indicate that it is

in an earlier stage of development compared to computer-

aided drug design and computational structural biology. From

the literature, we know that traditional machine learning mod-

els have been used in other QM applications, such as model-

ing electronic quantum transport,[125] learning parameters for

accurate semiempirical quantum chemical calculations,[126] and

so forth. In addition, new representation and fingerprints for

QM applications are also being developed.[127,128] Given the

observed superior accuracy of DNN-based models against tra-

ditional machine learning models in other fields of computa-

tional chemistry, we suggest that the development of DNN-

based model for these examples of machine learning QM

applications would be beneficial for the field.

Computational Material Design

The logical extension of DNN applications in the field of quan-

tum chemistry is to predict and design material properties
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that are correlated to or based on QM-calculated properties.

Quantitative structure property relationship (QSPR), which is

the analogous version of QSAR in the non-biological domain,

is the science of predicting physical properties from more

basic physiochemical characteristics of the compound, and it

has been extensively reviewed in prior publications.[129,130]

Similar to the early years of modern drug development, mate-

rial discovery is primarily driven by serendipity and institution-

al memory.[131] This has relegated the field to exploratory trial-

and-error experimental approaches, and the key bottleneck in

molecular materials design is the experimental synthesis and

characterization. In recent years, the paradigm of computation-

al and rational materials design has been encapsulated under

the materials genome initiative.[132,133] Due to the newness of

this field, in this section, we will examine a few key accom-

plishments of using machine learning for computational mate-

rial design, and highlighting deep learning applications where

available.

A recent high profile example of using machine learning

models to accelerate materials property research was pub-

lished by Raccuglia et al. in 2016.[30] The synthesis of inorgan-

ic–organic hybrid materials, such as metal organic frameworks

(MOFs), have been extensively studied for decades, but the

theoretical understanding of the formation of these com-

pounds are only partially understood. In the work by Raccuglia

et al., the authors used a SVM-based model to predict the

reaction outcomes for the crystallization of templated vanadi-

um selenites. What was interesting about their work, was the

inclusion of “dark” reactions in training the model, which are

failed or unsuccessful reactions collected from archived labora-

tory notebooks. The resulting model had an 89% success rate,

as defined by the synthesis of the target compound type.

Notably, this exceeded the human intuition success rate of

78%.[131] While a DNN-based model was not used in the study

per se, there is no technical reason why it could not be used

in place of SVM as a tool used for computational materials

synthesis prediction.

One example of how DNN has been used to accelerate

materials discovery was reported by Aspuru-Gizik and cow-

orkers in 2015.[134] Here, the authors used the dataset

obtained from the Harvard Clean Energy Project—a high-

throughput virtual screening effort for the discovery of high-

performance organic photovoltaic materials. The metric to be

predicted is power conversion efficiency (PCE) which is a func-

tion of the HOMO an LUMO energies and several other empiri-

cal parameters.[134] As no high quality 3D data was available

to generate Coulomb matrices, the authors decided to use fin-

gerprints based on molecular graphs as input representation.

Four different representations were tested and the results

showed generally consistent accuracy (within the same order

of magnitude) across HOMO, LUMO, and PCE predictions. The

dataset consisted of 200,000 compounds randomly selected

from the CEPDB database and another 50,000 was extracted

as the test set. Testing errors of HOMO and LUMO was 0.15

and 0.12eV, respectively, which is comparable to the DNN

model developed previously by von Lilienfeld and coworkers.

While DNN applications in material design is still at its infan-

cy, it would be interesting to see how its application will fare

against traditional QSPR applications and upcoming rational

materials design endeavors, such as in the prediction of spec-

tral properties of fluorophores,[135,136] properties of ionic

liquids,[137] and nanostructure activity.[138]

Reservations about Deep Learning and of
Being a Black Box

Machine learning algorithms, while they may not be the first

tool of choice for many practitioners in our field, undeniably

possess a rich history in the cheminformatics field and in

applications like QSAR and protein structure prediction. While

it may be argued that deep learning in some sense is a resur-

gence of the previous artificial neural network, the algorithmic

and technological breakthroughs in the last decade has

enabled the development of staggeringly complex deep neural

networks, allowing training of networks with hundreds of mil-

lions of weights. Coupled with the growth of data and GPU-

accelerated scientific computing, deep learning has overturned

many applications in computer science domains, such as in

speech recognition and computer vision. Given the similar par-

allels in the chemistry world, it suggests that deep learning

may be a valued tool to be added to the computational chem-

istry toolbox. As summarized in Table 1, which presents key

preliminary publications of DNN-based models, we have noted

the broad application of deep learning in many subfields of

computational chemistry. In addition, the performance of

DNN-based model is almost always equivalent to existing

state-of-the-art non neural-network models, and at times pro-

vided superior performance. Nevertheless, we have noticed

that the performance lift in many cases are not as significant,

if one is to make a comparison to the improvements DNN has

brought to its “parent” field of speech recognition and com-

puter vision. One mitigating factor that explains the lack of a

revolutionary advance in chemistry could be the relative scarci-

ty of data. Unlike the computer science domain where data is

cheap, especially when obtained from the internet or social

media, the quantity of usable data in chemistry is understand-

ably smaller and more expensive since actual experiments or

computations are needed to generate useful data. In addition,

the field of chemistry has been around for centuries and given

the fact that chemical principles are based on the laws of

physics, it is not unconceivable that the development of fea-

tures such as molecular descriptors to explain compound solu-

bility, for example, would be an easier task than developing

features to explain the difference between a dog and a cat, a

common task in computer vision. Therefore, with more accu-

rate and better engineered features in chemistry, it is also

plausible that we might not see such a large initial perfor-

mance improvement, especially for the relatively simpler

chemical principles or concepts.

Furthermore, as computational chemists, there is a greater

emphasis placed on conceptual understanding compared to

engineers or technologists which is arguably the more preva-

lent mindset in the computer science field. In this regard,
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deep learning algorithms currently fall short on two accounts.

First, it lacks the conceptual elegance of a first principles mod-

el that is based on the actual laws of physics, and second,

DNNs are essentially a black box; it is difficult to understand

what the neural network has “learned” or exactly how it is pre-

dicting the property of interest.

To address the first issue of conceptual elegance, from a cer-

tain perspective, this objection may be more of a philosophical

argument of scientific preferences. In most computational

chemistry applications, unless one is solving the Schrodinger

Equation exactly, which we know is impossible for anything

but a two body system, one must make approximations to the

model. In that sense, almost all of computational chemistry is

an empirically determined, and at times even intuitively deter-

mined, approximation of the “true” first principles Schrodinger

Equation. To illustrate this point, let us examine the historical

development of classical molecular modeling force fields, such

as CHARMM[42] and AMBER.[43] For example, the parameteriza-

tion of dihedral angle force constants have historically been

targeted to QM-calculated values, the “true” values grounded

in validated physical principles. However, because the dynam-

ics of real molecules do not behave in an additive fashion

(which itself is another approximation that classical molecular

modeling makes), more recent reparameterization have started

modifying dihedral parameters to empirically fit experimental

NMR distribution, even though that may lead to deviations

from the QM-calculated values.[142,143] Similarly, the choice of

columbic interactions to model electrostatic forces is only

approximately correct, and recent parameter development of

modeling charged ion interactions have started fitting to vari-

ous experimental observables such as osmotic pressure values,

and the introduction of nonphysical correction terms when

modeling specific pairs of electrostatic interactions.[144–146] In

these examples, approximation from first principles have to be

made, and this process is a human decision that is based on

empirical data or at times “chemical intuition”—which as Rac-

cuglia et al. have shown, is not infallible and not always more

accurate.[131] At the risk of oversimplification of the work that

computational chemist do, the development of existing com-

putational chemistry models may be viewed as an elaborate

curve fitting exercise. Instead of using human expert knowl-

edge, a conceivable alternative may be to use a deep learning

algorithm to “suggest,” or perhaps even help us “decide” what

approximations should be made to achieve the desired results,

in a move toward a future paradigm of a DNN-based artificial

intelligence (AI) assisted chemistry research. This naturally

Table 1. Meta-analysis of DNN-based model performance relative to state-of-the-art non-DNN models in various computational chemistry applications.

Prediction/

competition DNN models Comments

Non-DNN

models Comments

Merck Kaggle

challenge

(activity)

0.494 R2 DNN-based model was the top

performing model in the

competition.[61]

0.488 R2 Best non-DNN model in the competition.[139]

0.465 R2 Median DNN-based model

recreated by Merck

post-competition.[65]

0.423 R2 Best non-DNN model (RF-based) by Merck

post-competition.[65]

Activity 0.830 AUC MT-DNN-based model trained

on the ChEMBL database.[67]
0.816 AUC Best non-DNN model (SVM) trained on the

ChEMBL database.[66]

0.873 AUC MT-DNN-based model trained

on the PCBA database.[69]
0.800 AUC Best non-DNN model (RF)-based model

trained on the PCBA database.[69]

0.841 AUC MT-DNN-based model trained

on the MUV database.[69]
0.774 AUC Best non-DNN model (RF)-based model

trained on the MUV database.[69]

NIH Tox21

challenge

(toxicity)

0.846 AUC DeepTox (MT-DNN-based model)

was the top performing model.[85]
0.824 AUC Best non-DNN model (multitree ensemble

model) was placed third in the Tox21

challenge.[140]

0.838 AUC Runner up in Tox21 challenge was

based off associative neural

networks (ASNN).[141]

0.818 AUC Post-competition MT-DNN model.[69] 0.790 AUC Post-competition RF model.[69]

Atom-level

reactivity/

toxicity

0.949 AUC DNN-based model that predicts site

of epoxidation, a proxy for toxicity.[79]
– No comparable model in the literature

that can identify site of reactivity

or toxicity.

0.898 AUC DNN-based model that predicts site

of reactivity to DNA.[83]

0.944 AUC DNN-based model that predicts site

of reactivity to protein.[83]

Protein

contact

36.0% acc. CMAPpro (DNN-based model).[105]

34.1% acc. DNCON (DNN-based model).[107] 29.7% acc.

28.5% acc.

Best non-DNN model reported in CASP9,

ProC_S3 (RF-based model)[28] and

SVMcon (SVM-based model)[27]

are listed, respectively.

Only appropriate comparisons are summarized; models trained on similar/identical datasets, using either information extracted from publications by

the same group that reported multiple ML models or publically available competition.

REVIEW WWW.C-CHEM.ORG

1304 Journal of Computational Chemistry 2017, 38, 1291–1307 WWW.CHEMISTRYVIEWS.COM



leads to the second drawback of deep learning as the inevita-

ble question surfaces—How do we know that the deep learn-

ing model is learning the correct physics or chemistry?

We will concede that in its current implementation deep

learning algorithms is still a black box and interrogating what

it “learns” is an extremely challenging task. Nevertheless, black

box algorithms such as SVM and RF are also used in several

computational chemistry applications, notably in examples

where they are used primarily as a tool, and/or for prediction

of properties that are so complex that even a first principles

understanding of the problem will not necessarily aid in its

prediction. We acknowledge that to advance deep learning to

be more than just another tool in the chemist’s toolkit, and for

it to gain more widespread applicability and adoption for sci-

entific research, it is evident that improvement in interpretabil-

ity of DNN is of paramount interest. While interpretability of

neural networks has historically not been a strong research

focus for practitioners in this field, it is noteworthy that several

recent developments on improving interpretability has been

reported.[147,148] Other viable options include the use of differ-

ent neural network-based machine learning models, such as

influence-relevance voters (IVR) that are designed for interpret-

ability. As demonstrated on a few computational chemistry

applications from the work of Baldi and coworkers,[149,150] the

IRV is a low-parameter neural network which refines a k-near-

est neighbor classifier by nonlinearly combining the influences

of a chemical’s neighbors in the training set. IRV influences are

decomposed, also nonlinearly, into a relevance component

and a vote component. Therefore, the predictions of the IRV is

by nature transparent, as the exact data used to make a pre-

diction can be extracted from the network by examining each

prediction’s influences, making it closer to a “white-box” neural

network method.[149,150]

Conclusion

Unlike traditional machine learning algorithms currently used

in computational chemistry, deep learning distinguishes itself

in its use of a hierarchical cascade of nonlinear functions. This

allows it to learn representations and extract out the necessary

features from raw unprocessed data needed to predict the

desired physicochemical property of interest. It is this distin-

guishing feature that has enabled deep learning to make sig-

nificant and transformative impact in its “parent” field of

speech recognition and computer vision. In computational

chemistry, its impact is more recent and more preliminary.

Nevertheless, based on the results from a number of recent

studies, we have noted the broad application of deep learning

in many subfields of computational chemistry, including com-

puter aided drug design, computational structural biology,

quantum chemistry and materials design. In almost all applica-

tions we have examined, the performance of DNN-based mod-

el is frequently superior to traditional machine learning

algorithms.

As the complexity of the problem increases that enables the

application of multitask learning (i.e., more predictions of dif-

ferent properties are required), and as the size of the dataset

increases, we have also seen deep learning progressing from

frequently outperforming to always outperforming traditional

machine learning models. In addition, some preliminary find-

ings indicate that explicitly engineered features such as molec-

ular descriptors may not be necessary to construct a high

performing DNN model, and simpler representations in the

form of molecular fingerprint or coulomb matrices may suffice.

This is because of DNN’s ability to extract out its own features

through its hidden layers. There is even indication that the fea-

tures “learned” by DNNs correspond to actual chemical con-

cepts such as toxicophores. Coupled with recent research on

improving interpretability of neural networks, it suggest that

the future role of DNN in computational chemistry may not

just be only a high-performance prediction tool, but perhaps

as a hypothesis generation device as well.
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