QUÍMICA ANALÍTICA I

Documento de apoyo (6): Cálculo del pH de sistemas monodonadores conjugados nivelados y no-nivelados. Ecuación de Charlot y reducción polinomial con base a la Ley de dilución de Ostwald.

Dr. Alejandro Baeza. Semestre 2010-II.

Planteamiento del sistema en estudio

Sistemas nivelados:

Solvo ácidos:

Se mezclan el monodonador solvoácido monoprótico nivelado

La solución se forma según los procesos I y II:

$$HX \rightarrow X^- + H^+$$

 $H_2O = H^+ + OH^-$

Al equilibrio se cumple el balance de masa, la Kw de disociación del agua y el balance de electroneutralidad:

$$F_{HX} = Co = [X^{-}]$$

 $[H^{+}] = [OH^{-}] + [X^{-}]$

Solvo bases:

Se mezclan el monodonador solvoácido monoprótico nivelado

La solución se forma según los procesos I y II:

$$MOH \rightarrow M^+ + OH^-$$

$$H_2O = H^+ + OH^-$$

Al equilibrio se cumple el balance de masa, la Kw de disociación del agua y el balance de electroneutralidad:

$$F_{MOH} = Co = [M^+]$$

 $[M^+] + [H^+] = [OH^-]$

Sistemas no-nivelados:

Se mezclan el monodonador solvoácido monoprótico de un par y su no-solvobase conjugada:

La solución se forma según los procesos I y II:

$$HA = A^{-} + H^{+}$$

$$Co (1-\alpha) \quad \alpha Co \quad \alpha Co$$

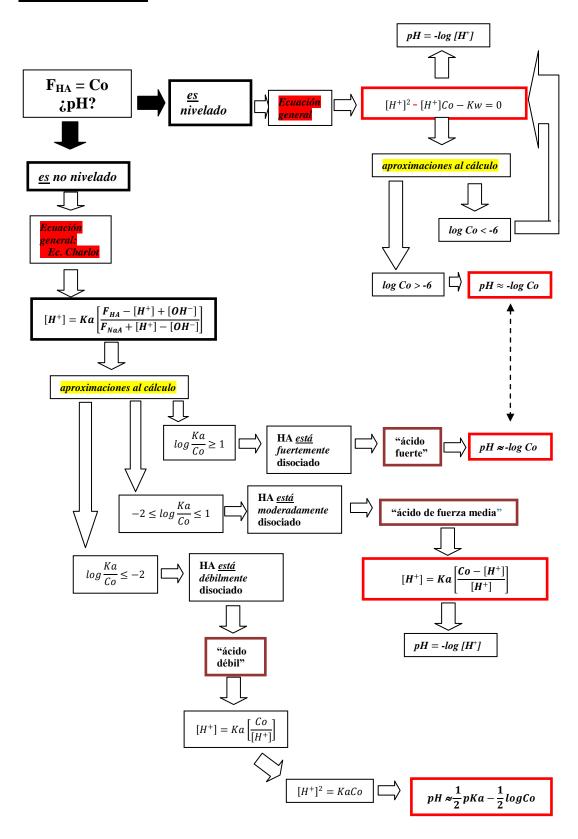
$$NaA \rightarrow Na^+ + A^-$$

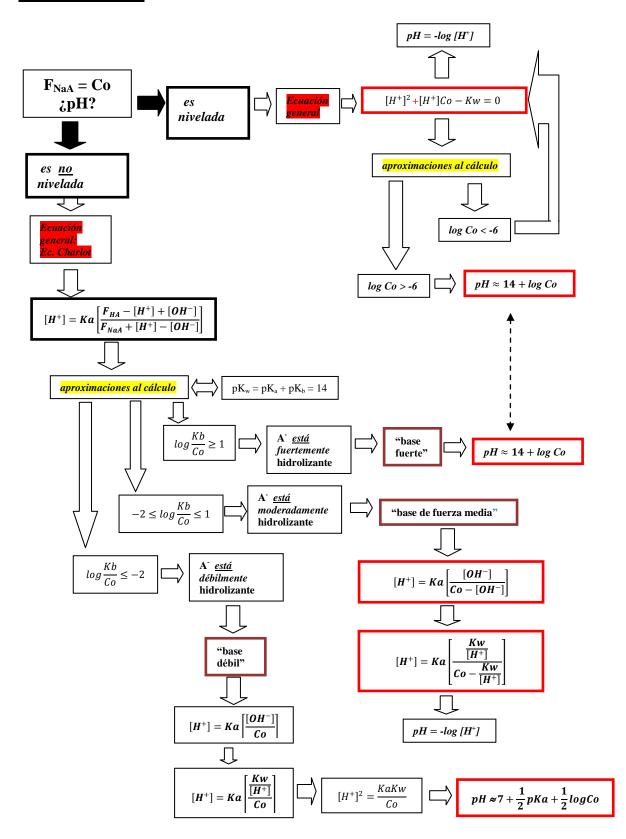
 $A^- + H_2O = HA + OH^-$
 $H_2O = H^+ + OH^-$

Al equilibrio se cumple el balance de masa, la Ka de disociación y el balance de electroneutralidad:

$$F_{HA} + F_{NaA} = Co = [HA] + [A^{-}]$$

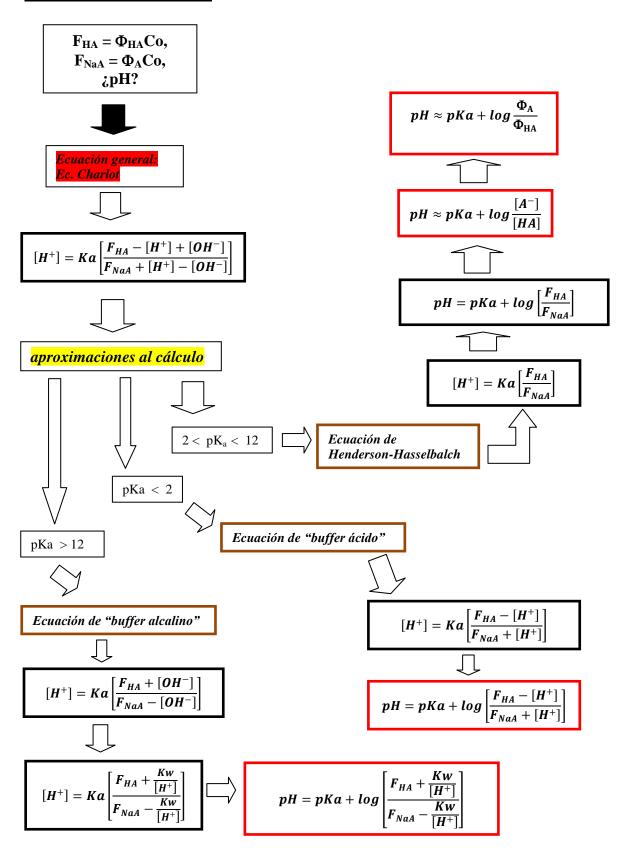
$$K_a = \frac{[A^-][H^+]}{[HA]}$$


$$[Na^{+}] + [H^{+}] = [OH^{-}] + [A^{-}]$$


En la sección siguiente se muestran las ecuaciones generales derivadas de los balances de electroneutralidad, de masa, de las Ka, Kb y Kw, así como las condiciones de dilución (Ley de dilución de Ostwald*) que permiten reducir sendos polinomios para el cálculo del pH.

*
$$\lim \alpha = 1$$

Co $\rightarrow 0$


RESUMEN ácidos:

RESUMEN Bases:

RESUMEN par conjugado:

RESUMEN anfolito:

$$F_{NaHA} = \Phi_{HA}Co,$$
 ¿pH?

Ecuación general: Ec. Charlot

$$[H^+] = \sqrt{\frac{Ka_1Ka_2Co + Ka_2K_w}{Ka_2 + Co}}$$

aproximaciones al cálculo

$$pKa_1 + pKa_2 + pCo > pKa_1 + pKw$$

$$pKa_2 > pCo$$

$$[H^+] = \sqrt{\frac{Ka_1Ka_2Co}{Co}}$$

$$pH = \frac{1}{2}(pKa_1 + pKa_2)$$

Bibliografía de apoyo:

1.0 J. N. Butler

"Solubility and pH Calculations" Addison-Wesley Publishing Company, Inc. 1964.

2.0 Richard W. Remette

"Equilibrio y Análisis Químico" Fondo Educativo Interamericano. 1983.

3.0 Alfred Martin

"Physical Pharmacy" Fourth Edition Lea & Febiger, Philadelphia, London. 1993.

4.0 Alejandro Baeza

"Química Analítica. Expresión Gráfica de las Reacciones Químicas" S. y G. Editores. 2006.

5.0 Ma. del Pilar Cañizares, Georgina A. Duarte

"Fundamentos de Química Analítica"
Facultad de Química. UNAM.
2007.