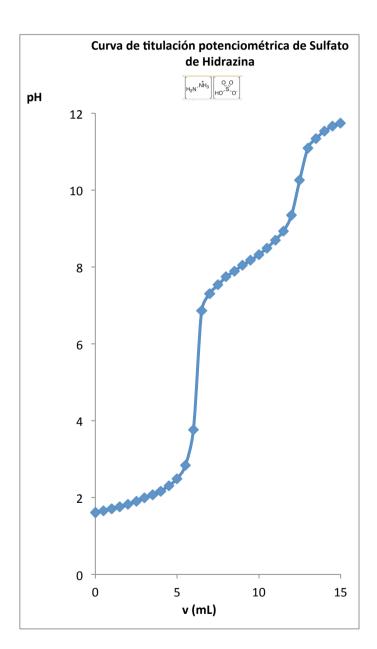
QUÍMICA ANALÍTICA I.

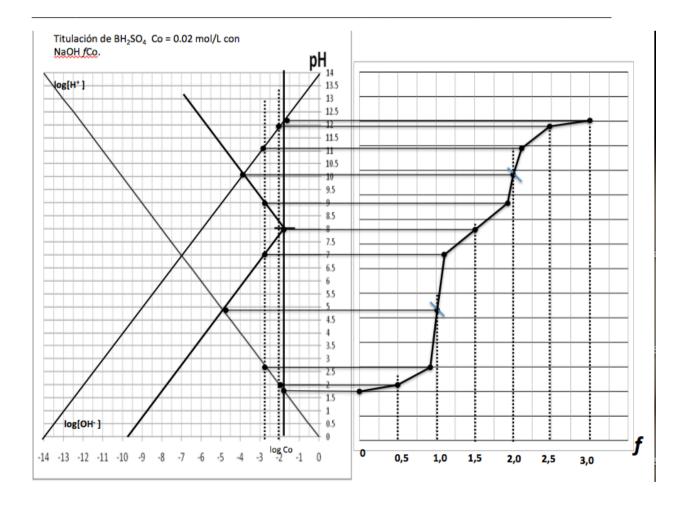

Tarea: Reactividad ácido-base. Sulfato de hidracina.

Dr. Alejandrito Baeza.

Planteamiento del sistema en estudio.

Una masa de 69.2 mg de sulfato de hidracina se disuelve en 30 mL de agua destilada y se hace reacción por adiciones de una disolución de NaOH 0.0883 mol/L. Se monitorea el proceso por determinación potenciométrica del pH. Se obtienen los siguientes resultados:

pН
1.61
1.66
1.7
1.76
1.83
1.9
1.99
2.08
2.17
2.31
2.49
2.83
3.77
6.86
7.31
7.53
7.74
7.89
8.04
8.17
8.32
8.49
8.7
8.93
9.35
10.26
11.09
11.34
11.53
11.66
11.74



Si se simboliza a este compuesto como BH_2SO_4 , los procesos de reacción involucrados en la formación de la disolución titulada son los siguientes:

$$BH_2^{2+} \rightarrow BH^+ + H^+; BH^+ = B + H^+ pKa = 8.01;$$

Preguntas

- 1.0 Es una escala de reactividad de pH mostrar las reacciones que ocurren al disolver el sulfato de hidracina y las reacciones y al agregar el hidróxido de sodio. Calcular las Keq respectivas.
- 2.0 Explicar la forma de la curva pH = f(volumen agregado) indicando los pares conjugados responsables de las zonas amortiguadas y de sendos puntos de equivalencia experimentales.
- 3.0 Realizar la curva de titulación teórica por medio de:
 - a) cálculo algebraico
 - b) diagrama acoplado $\log [i] = pH = f(f)$
- 4.0 Calcular la cuantitatividad porciento, q%, en sendos puntos de equivalencia. Calcular el título de la solución
- 5.0 Calcular el porcentaje de error que se cometería al determinar de rutina la pureza de esta sal si se usan los siguientes indicadores visuales:
 - a) fenolftaleína
 - b) anaranjado de metilo

