2010-II

Facultad de Química. UNAM

Dr. Alejandro Baeza Laboratorio 3E anexo. Tel. 56-22-37-50

<u>baeza@servidor.unam.mx</u> <u>baezareyes@hotmail.com</u> http://mx.geocities.com/electroquimika

QUÍMICA ANALÍTICA I (1402) TRABAJOS PRÁCTICOS Y DIRIGIDOS

Se presentan el calendario, indicaciones y temario de los trabajos prácticos, guías de trabajo experimental y documentos de apoyo.

Introducción.

El laboratorio contempla sesiones de trabajos dirigidos (resolución de problemas). En las sesiones de TD se revisarán los resultados obtenidos de sendos TP. Si no se realiza por suspensión o falta el TP el alumno deberá conseguir los datos experimentales para asistir son su bitácora al correspondiente TD y ExTP.

Operatividad:

- 1.0 La entrada al laboratorio tiene una tolerancia de 10 minutos.
- 2.0 Es necesario el uso de bata, guantes y lentes de seguridad de acuerdo al reglamento de seguridad del departamento de lo contrario causa suspensión a la sesión del laboratorio.
- 3.0 Es necesario llevar bitácora de laboratorio de lo contrario causa suspensión a la sesión del laboratorio.
- 4.0 El material necesario será proporcionado directamente en la mesa del laboratorio. El alumno deberá dejarlo limpio en el mismo lugar al final.
- 5.0 La calificación estará dada por:
 - a) Asistencia a las sesiones de TP
 - b) bitácora previa a la realización de la práctica
 - c) Asistencia a las sesiones de TD
 - d) Exámenes de TP
- 6.0 Después de **2 faltas o suspensiones** se reprueba el laboratorio.

PROGRAMA:

- TP1 Preparación de soluciones: NaOH 0.1F, HCl 0.1F.Control del NaOH con patrón primario de biftalato de K .
- **TP2** Reactividad redox. Escalas de E y pe de Ag⁺|Ag⁰ y Cu²⁺|Cu⁰.
- **TP3** Reactividad ácido-base. Reacción de carbonatos con HCI. Indicadores ácido-base.
- **TP4** Caracterización potenciométrica ácido-base. Sistemas nivelados y no nivelados.
- TP5 Complejometría. Monitoreo de Cu(II) por yodo en medios complejantes
- **TP6** Reacciones de precipitación. Insolubilidad de mezclas de haluros de Ag⁺.
- TP7 Reacciones de distribución. Extracción líquido-líquido de Oxina.
- TP8 Reacciones de intercambio iónico. Determinación de C_I.

TP1 Preparación de soluciones: NaOH 0.1F, HCl 0.1F,Control del NaOH con patrón primario de biftalato de K .

Preguntas previas.

- a) Calcular los volúmenes requeridos para preparar las disoluciones de NaOH
 y HCl.
- b) Calcular los volúmenes esperados de punto final en la operaciones de microtitulación.

Guía experimental:

1.0 Disolución de NaOH 0.1F.

Tomar un volumen adecuado de una solución de sosa (40g/50 mL H₂O) para preparar 50 mL de solución de NaOH 0.1F con agua destilada y en matraz aforado. Tomar el volumen con una micropipeta automática o con una jeringa de insulina de 0.5 mL. Verter en un frasco de plástico rotulado como "NaOH 0.1F, fecha dd/mm/aa, nombre y grupo (A) o (B).

2.0 Disolución de HCl 0.1 F.

Tomar un volumen adecuado de una solución de HCI (12.1F) para preparar 50 mL de solución de HCI 0.1F con agua destilada y en matraz aforado. tomar el volumen con una micropipeta automática o con una jeringa de insulina de 0.5 mL. Verter en un frasco de plástico rotulado como "HCI" 0.1F,fecha d/mm/aa, nombre y grupo (A) o (B).

- 3.0 Normalización de las disoluciones.
 - a) Titulación de la solución de NaOH.

En un matraz Erlen Meyer de 5 mL adicionar una alícuota de 0.5 mL de una disolución de patrón primario de biftalato de potasio 0.1F. Adicionar agua destilada a discreción. Agregar 3 gotas de indicador fenolftaleína (50 mg/100 mL). Titular con la disolución de NaOH por quintuplicado con una microbureta de 1 mL.

b) Titulación de la solución de HCI.

En un matraz Erlen Meyer de 5 mL adicionar una alícuota de 0.5 mL de la disolución de HCl 0.1F. Adicionar agua destilada a discreción. Agregar 3 gotas de indicador fenolftaleína (50 mg/100 mL). Titular con la disolución de NaOH por quintuplicado con la microbureta de 1 mL.

Procesamiento de datos y preguntas para concluir.

1.0 En una tabla verter la información obtenida:

<u>Titulación de NaOl</u>	H volumen p.f. [mL]	conc. exacta[mol/L]
1		
2		
3		
4		
5		
Promedio —		
c.v.% —		

- 3.0 Escribir las reacciones iónicas de titulación utilizadas.
- 4.0 Calcular la concentración molar aproximada del indicador (1 gota \approx 53 μ L).
- 5.0 ¿Cómo podría ajustarse la concentración exacta para alcanzar la concentración nominal y re-titular?.

Bibliografía

1.0 Arthur I. Vogel

QUIMICA ANALITICA CUANTITATIVA

Volumen I. Volumetría y Gravimetría.

Editorial Kapelusz.

1960.

2.0 Rebeca Sandoval

QUÍMICA ANALÍTICA

Curvas potenciométricas de titulación ácido-base

UNAM-Ed. Porrúa, S.A.

1988.

3.0 D. C. Harris

ANÁLISIS QUÍMICO CUANTITATIVO

Grupo Editorial Iberoamérica.

1991

4.0 A. Baeza

MICROBURETA A MICROESCALA TOTAL PARA TITULOMETRÍA

Rev. Chil. Educ. Cient. 1[2](2003)4-7

TP2 Reactividad redox. Determinación de E° y pKd redox.

Preguntas previas.

1.0 Describir la ecuación de Nernst-Peters que relaciona el potencial de una interfase eléctrica metal|solución.

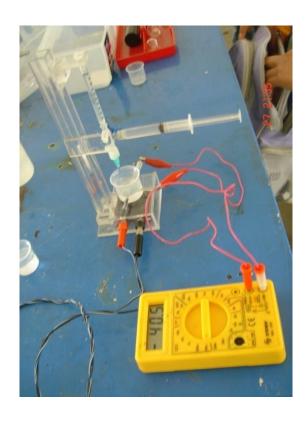
2.0 Consultar el valor del potencial del electrodo de calomel saturado con respecto al E.N.H.

Guía experimental:

1.0 Determinación micropotenciométrica del E° del par redox Ag°|Ag⁺.

-En una celda de 5 mL colocar dos microelectrodos:

El: microelectrodo indicador de Ag°


ET: microelectrodo de referencia Cu°|Cu(NO₃)₂ 0.05 M||

-Adicionar 5 mL de agua destilada.

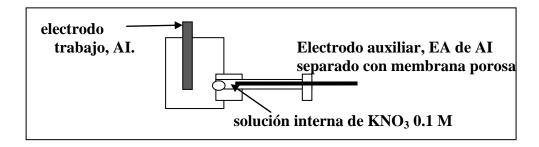
-Conectar los electrodos al multímetro. El electrodo de referencia debe estar conectado a la "tierra" del multímetro.

- Llenar la microbureta con disolución de AgNO₃ 0.1 mol/L.
- Medir la diferencia de potencial con el multímetro entre adiciones de
 0.1 mL de nitrato de plata hasta 1 mL total.
- 2.0 Determinación micropotenciométrica del E° del par redox Cu°|Cu²+.
 - -En una celda de 5 mL colocar dos microelectrodos:

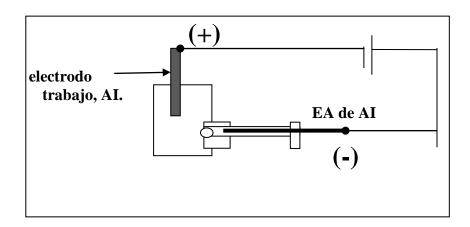
El: microelectrodo indicador de Cu°.

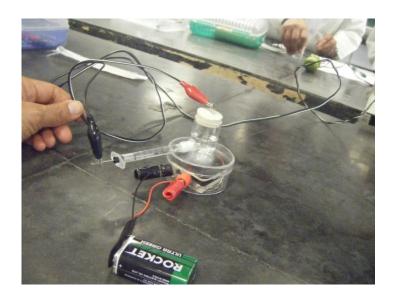
ET: microelectrodo de referencia Cu°|Cu(NO₃)₂ 0.05 M||

- -Adicionar 5 mL de agua destilada.
- -Conectar los electrodos al multímetro. El electrodo de referencia debe estar conectado a la "tierra" del multímetro.
- Llenar la microbureta con disolución de Cu(NO₃)₂ 0.1 mol/L.
- Medir la diferencia de potencial con el multímetro entre adiciones de
 0.1 mL de nitrato de cobre hasta 1 mL total.
- Antes de desechar la disolución final de Cu(II) adicionar 1 gota de NH₃ concentrado. Observar y anotar los cambios en color.
- 3.0 Reactividad redox.
 - -En una microcelda de 0.5 mL adicionar 300 μL de solución de AgNO₃ y 1 microgota (con jeringa de insulina) de NH3 concentrado.
 - Sumergir un alambre de Cu°. Observar.

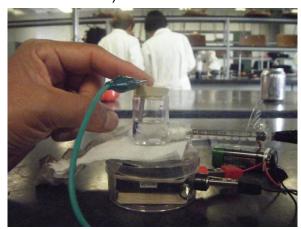


4.0 Medir el potencial del microelectrodo de referencia con respecto a un electrodo de calomel saturado estándar, ECS, conectando ambos al multímetro sumergidos en 5 mL de agua destilada.


DEMOSTRACIÓN PARA CLASE DE TRABAJOS DIRIGIDOS:


5.0 Determinación electroquímica de ácido ascórbico en jugo de limón:

a) Preparar la siguiente microcelda electroquímica:



- b) Colocar en la celda:
 - -2.5 mL de KI 0.01 mol/L,
 - -1 mL de amortiguador de
 - -acético/acetato pH=5, 0.1mol/L,
 - -2 gotas de indicador de almidón
 - -0.1 mL de ácido ascórbico 10 mM.
 - -microbarra de agitación
- c) Bajo vigorosa agitación medir el tiempo simultáneamente al conectar el electrodo de trabajo al polo positivo de la fuente de potencial de 12 V y el electrodo auxiliar el polo negativo:

- d) Desconectar y medir el tiempo requerido para el vire permanente del indicador.
- e) Repetir el experimento pero sustituyendo el estándar de ácido ascórbico |por 0.5 mL de jugo de limón diluido (1 mL de jugo + 1 mL de agua destilada).

Procesamiento de datos y preguntas para concluir.

1.0 Calcular la concentración de sendos cationes en solución para cada adición tomando en cuenta el efecto de la dilución:

$$[M^{z+}] = \frac{(C_M)(v_{agr})}{(V_0 + v_{agr})}$$

1.0 En sendas tablas verter la información obtenida para cada catión:

E (ER)	volumen agregado	$[M^{z+}]$	log [<i>M</i> ^{z+}]	

- 3.0 Elaborar las graficas $E = f(log [M^{z+}])$ y efectuar un análisis por regresión lineal con mínimos cuadrados.
- 4.0 Con el valor de la ordenada al origen de las rectas anteriores elaborar una escala de reactividad de potencial y colocar sendos pares redox Ag°|Ag⁺ y Cu°|Cu²⁺.
- 5.0 Con el valor de E del electrodo de referencia con respecto al ECS, y éste con respecto al ENH, correlacionar los pares redox en escalas con respecto a ER, ECS, ENH y absoluta de potencial.
- 6.0 Con base a las escalas determinadas con los resultados experimentales explicar los fenómenos observados al poner en contacto Cu° con Ag⁺.

- 7.0 Escribir las reacciones electroquímicas que ocurren en la celda microelectroquímica.
- 8.0 Determinar el contenido de ácido ascórbico en el jugo de limón.

Bibliografía

1.0 D. C. Harris

ANÁLISIS QUÍMICO CUANTITATIVO

Grupo Editorial Iberoamérica.

1991

2.0 A. Baeza

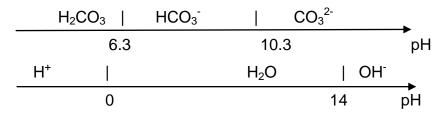
TITULACIONES ÁCIDO-BASE POTENCIOMÉTRICAS A MICROESCALA TOTAL CON MICROSENSORES DE pH Y DE MICROREFERENCIA DE BAJO COSTO.

Rev. Chil. Educ. Cient. 1[2](2003)16-19

3.0 ANEXO:

Documento de Apoyo.

POTENCIOMETRÍA ANALÍTICA


Dr. Alejandro Baeza.

2008

TP3 Reactividad ácido-base. Reacción de carbonatos con HCI. Indicadores ácido-base

Preguntas previas.

1.0 Con ayuda de la información proporcionada en los DUZP, en una escala de reactividad predecir las reacciones entre el Na₂CO₃ y el HCl en su forma ionizada.

- 2.0 Calcular la K_{reac} de sendas reacciones.
- 3.0 Consultar en la literatura las propiedades de los indicadores ácido-base Fenolftaleína y anaranjado de metilo.

Guía experimental:

- 1.0 Llenar la microbureta de 1 mL con HCl 0.1 mol/L normalizado en el trabajo práctico 1.
- 2.0 Reacción con indicador de fenolftaleína.
 En un matraz Erlen Meyer de 5 mL colocar 0.3 mL de una disolución de Na₂CO₃ 0.1 mol/L y agua destilada a discreción y 3 gotas de indicador fenolftaleína.

Adicionar HCl al vire de la fenolftaleína de color bugambilia pasional a incoloro.

Efectuar el experimento por triplicado.

3.0 Reacción con indicador de anaranjado de metilo.

En un matraz Erlen Meyer de 5 mL colocar 0.3 mL de una disolución de Na₂CO₃ 0.1 mol/L y agua destilada a discreción. y 3 gotas de indicador rojo de metilo.

Adicionar HCl al vire del anaranjado de metilo de color de amarillo piñita a rojo canela.

Efectuar el experimento por triplicado.

4.0 Reacción con indicador de fenolftaleína y monitoreo instrumental.

En una celda de 5 mL con un microelectrodo sensor de pH de W° y un microelectrodo de referencia de Cu°|Cu(II)|H₂O||, colocar 0.3 mL de una disolución de Na₂CO₃ 0.1 mol/L y agua destilada a discreción y 3 gotas de indicador fenolftaleína.

Conectar los microelectrodos al multímetro para medir la diferencia de potencial entre ellos. El microelectrodo de referencia se conecta a "tierra" del potenciómetro.

Adicionar HCl en incrementos de 20 µL hasta 1 mL. Medir el potencial entre cada adición. Observar la disolución y registrar el volumen y el potencial de vire.

5.0 Reacción con indicador de anaranjado de metilo y monitoreo instrumental.

En una celda de 5 mL con un microelectrodo sensor de pH de W° y un microelectrodo de referencia de Cu° $|Cu(II)|H_2O||$, colocar 0.3 mL de una disolución de Na $_2CO_3$ 0.1 mol/L y agua destilada a discreción y 3 gotas de indicador anaranjado de metilo.

Conectar los microelectrodos al multímetro para medir la diferencia de potencial entre ellos. El microelectrodo de referencia se conecta a "tierra" del potenciómetro.

Adicionar HCl en incrementos de 20 µL hasta 1 mL. Medir el potencial entre cada adición. Observar la disolución y registrar el volumen y el potencial de vire.

Procesamiento de datos y preguntas para concluir.

1.0 Elaborar una tabla donde se encuentre la siguiente información:

Indicador	volumen de vire	(V _{rm} /V _{fen})
Fenolftaleína Anaranjado de metilo		

2.0 Encontrar la relación lineal pH = f(E) y transformar los valores de E a pH. Para ello considerar dos puntos de la recta siguientes:

$V_{agr\ HCl}$	Е	рН	
0 mL 1 mL		11.5 2.0	

- 3.0 Efectuar las gráficas pH = f (volumen agregado de HCl) e indicar sobre ellas el pH de vire de sendos indicadores.
- 4.0 Con base a todos los resultados explicar las reacciones ácido-base entre el carbonato y el ácido y los indicadores.

Bibliografía en la siguiente página:

1.0 D. C. Harris

ANÁLISIS QUÍMICO CUANTITATIVO

Grupo Editorial Iberoamérica.

1991. **Pág. 242.**

2.0 A. Baeza

TITULACIONES ÁCIDO-BASE POTENCIOMÉTRICAS A MICROESCALA
TOTAL CON MICROSENSORES DE pH Y DE MICROREFERENCIA DE
BAJO COSTO.

Rev. Chil. Educ. Cient. 1[2](2003)16-19

3.0 A. Baeza

QUÍMICA ANALÍTICA. EXPRESIÓN GRÁFICA DE LAS REACCIONES QUÍMICAS.

S.y G. Editores. 2006. Pág. 253.

TP4 Reactividad ácido-base. Caracterización potenciométrica de pares conjugados.

Preguntas previas.

- 1.0 Efectuar los cálculos necesarios para preparar, a partir de soluciones concentradas o reactivos sólidos, las siguientes disoluciones:
 - a) HCl 0.1 mol/L
 - b) Ácido acético 0.1 mol/L
 - c) NH₂OH₂CI (cloruro de hidroxilamonio, HBCI) 0.1 mol/L
 - c) $K_2Cr_2O_7$ 0.05 mol/L
 - d) NH_4NO_3 0.1 mol/L
 - e) C_6H_5OH (ϕ -OH, fenol) 0.01 mol/L
 - f) NaOH 0.1 mol/L.
- 2.0 Trazar las curvas teóricas de monitoreo pH = f(f), de las reacciones progresivas de los ácidos anteriores por adiciones fCo de NaOH.
 - Para ello trazar los diagramas logarítmicos acoplados log[i] = f(pH) = f(f).
- 3.0 Consultar el funcionamiento del electrodo de vidrio para la determinación potenciométrica del pH.

Guía experimental:

- 1.0 Llenar una bureta de 10 mL con la disolución de NaOH 0.1 mol/L.
- 2.0 Sumergir los electrodos en 30 mL de agua destilada:
- 3.0 Medir el pH con un potenciómetro calibrado con disoluciones amortiguadores de pH 4 y 7, entre adiciones de NaOH desde 0 mL en incrementes de 0.5 mL hasta 10 mL totales.
 - Agitar en todo momento la disolución con una barra magnética sin golpear al sensor de vidrio de pH:
- 4.0 Repetir el experimento pero ahora en presencia de 5 mL de sendas disoluciones de ácidos y 25 mL de agua.

Procesamiento de datos y preguntas para concluir.

1.0 Efectuar una tabla donde se vierta la información experimental siguiente:

				рН			
	HCI	Ac. Acet	HBCI	K ₂ Cr ₂ O ₇	NH ₄ NO ₃	fenol l	H₂O
volumen							
		1					

- 2.0 En una misma hoja de papel milimetrado o de *excel* hacer la gráfica de $pH = f(volumen \ agregado)$ para todos los ácidos ensayados (incluyendo el agua).
- 3.0 Determinarl el volumen de equivalencia experimental por medio de las gráficas de primera y segunda derivadas de las curvas anteriores. Para ello consultar la referencia (3) de la bibliografía recomendada.
- 4.0 Determinar el pH para el volumen igual a (1/2)V_{p.eq.exp.,} para todos los ácidos y con ellas proponer una escala de reactividad ácido-base con sendos pares conjugados ensayados.
- 5.0 Con ayuda de la referencia (4) de la literatura, encontrar las funciones de Gran de los sistemas nivelados ensayados: HCl y NaOH.
- 6.0 Aplicar la función anterior para determinar los límites de la escala de pH del agua para pCo = 0 como condición estándar.

Bibliografía en la siguiente página:

1.0 D. C. Harris

ANÁLISIS QUÍMICO CUANTITATIVO

Grupo Editorial Iberoamérica.

1991. **Pág. 242.**

2.0 A. Baeza

QUÍMICA ANALÍTICA. EXPRESIÓN GRÁFICA DE LAS REACCIONES QUÍMICAS.

S.y G. Editores. 2006. Pág. 253.

3.0 Documento de Apoyo: Derivadas para datos pH

Adrián de Santiago Zárate

http://depa.fquim.unam.mx/amyd

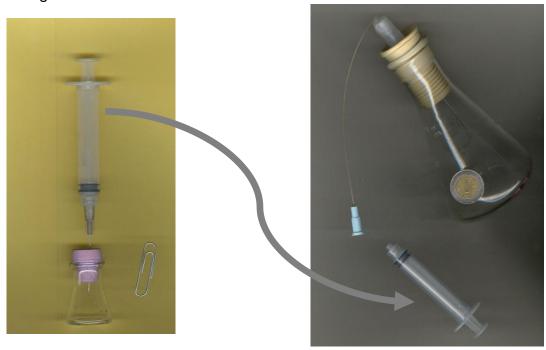
Q.A.I Alejandro Baeza

4.0 Presentación de Clase: Función de Gran

http://depa.fquim.unam.mx/amyd

Q.A.I Alejandro Baeza

TP5 Monitoreo de Cu(II) por yodo en medios complejantes


Preguntas previas.

- 1.0 Escribir la reacción de solubilización de Cu(0) en medio nítrico concentrado.Calcular su Keq con los valores de pKd o E° respectivos.
- 3.0 Consultar en la literatura las reacciones del yodo y del tiosulfato.
- 2.0 Consultar en la literatura la reacción entre el Cu(II) y el KI.
- 4.0 Consultar en la literatura las características visuales de los complejos de Cu(II) con amoniaco, con acetatos, del yodo-yodurado y yodo-almidón.

Guía experimental:

Solubilización de la muestra.

- 1.0 En un matraz erlen-meyer de 5 mL se pesa una masa menor entre 10 y 100 miligramos de Cu(0).
- 2.0 En la campana se adiciona una o dos gotas de HNO₃ concentrado hasta solubilización completa. Tapar y extraer con una jeringa los gases nitrosos y posteriormente introducirlos a una disolución concentrada de péroxido de hidrógeno.

- 3.0 Se adicionan 5 mL de agua destilada y se conserva tapado. Anotar los colores y apariencia de la disolución obtenida (DISOLUCIÓN A).
- 4.0 Se toma una alícuota de 0.5 mL de la disolución A y se coloca en un matraz erlen-meyer de 5 mL. Se agrega agua a discreción para disolver la alícuota de muestra.

Acondicionamiento de la muestra:

- 5.0 Se adicionan gotas de amoniaco concentrado hasta la formación completa de cobre amoniacal. Observar coloración y apariencia.
- 6.0 Se adicionan gotas de ácido acético concentrado hasta desaparición de los complejos amoniacales. Observar coloración y apariencia.
- 7.0 Se adicionan con una espátula pequeña cristales de KI hasta desaparición completa de los complejos de cobre (II). Observar coloración y apariencia.
- 8.0 Se guarda en la obscuridad durante 10 minutos.

Cuantificación del Cu(II).

9.0 Con una microbureta de 1 mL, se titula con Na₂S₂O₃ 0.1 mol/L. Se adiciona titulante hasta que la coloración café se atenúe.

10.0 Entonces se adiciona solución de almidón y se sigue la titulación hasta el vire que consiste en la decoloración completa del color azul del complejo yodo-almidón. Se registra el volumen de punto de equivalencia experimental.

Preguntas para concluir.

1.0 Completar las funciones de los reactivos usados en cada etapa:

a) Cu(0): analito

b) ácido nítrico: solubiliza al analito

c) amoniaco

d) ácido acético: neutraliza el exceso de amoniaco

e) KI: f) I₃-:

g) $Na_2S_2O_3$: titulante

h) almidón:

- 2.0 Explicar porqué no se cuantifica al Cu(II) con el KI en medio ácido nítrico.
- 3.0 Explicar porqué no se cuantifica al Cu(II) con el KI en medio alcalino amoniacal.
- 4.0 Explicar porqué sólo después de neutralizar el exceso de amoniaco con ácido acético se hace reaccionar al cobre (II) con el yoduro.
- 5.0 Escribir balanceada la reacción de oxido-reducción del Cu(II) con el KI. Explicar la importancia del complejo insoluble involucrado.
- 6.0 Escribir la reacción entre el complejo de yodo-yodurado y el tiosulfato, calcular su Keq.
- 7.0 Con el volumen de punto de equivalencia experimental calcular la masa de Cu(0) de partida.

Bibliografía

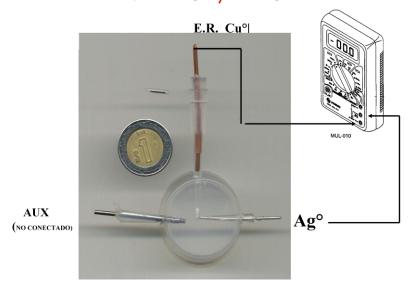
(1) Arthur I. Vogel
QUÍMICA ANALÍTICA CUANTITATIVA.
Volumen I. Volumetría y Gravimetría.
Editorial Kapelusz.
1960.

(2) F. Burriel, F. Lucena Conde, S. Arribas Jimeno y J. Hernández Méndez QUÍMICA ANALÍTICA CUALITATIVA.
Novena Edición.
Paraninfo.
1989.

(3) A. Araneo
QUÍMICA ANALÍTICA CUALITATIVA.
Mc. Graw Hill
1981.

TP6 Reacciones de precipitación. Insolubilidad de mezclas de haluros de Ag⁺.

Preguntas previas.


- 1.0 De acuerdo a la información de la literatura^[1] trazar el diagrama acoplado log [i] = pAg = $f(t)^{[2]}$, para una mezcla constituida por 5 mL de KCI, KBr y KI 4 mM c/u.
 - Si se adicionan cantidades de Ag(I) iguales a fCo.
- 2.0 Diseñar un esquema de separación gravimétrica a pAg impuesto de la mezcla anterior.

Guía experimental:

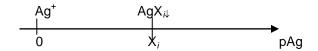
- 1.0 Llenar una microbureta de 1 mL con disolución de AgNO₃ 0.1 mol/L.
- 2.0 En una celda con microelectrodos de trabajo de Ag° y de microreferencia de Cu°|H₂O||, verter 5 mL de haluro de K 4mM. Ensayare KCI, KBr y KI 4 mM c/u.
- 3.0 Conectar al multímetro los microelectrodos:

Propuesta: microcelda multifuncional sin puente salino:

Fac. Química UNAM

FQ UNAM Alejandro Baeza 2007

Alejandro Baeza


4.0 Medir el potencial entre adiciones de 0.02 mL hasta 1 mL manteniendo agitación constante con una microbarra de agitación.

Preguntas para concluir.

1.0 Elaborar una tabla con los datos siguientes:

E	pe	volumen agregado

- $2.0 \qquad \text{Elaborar las gráficas pe} = f(v), \ (\Delta pe/\Delta v) = f(v_{\text{prom}}) \ y \ \Delta ((\Delta pe/\Delta v)/\ \Delta v_{\text{prom}} = f(v_{\text{prom } \ v \ \text{prom}}).$
- 3.0 Con ayuda de las gráficas anteriores determinar los volúmenes de equivalencia experimental.
- 4.0 Determinar el valor de pKs experimental de los haluros de plata.
- 5.0 Con los valores de pKs determinados elaborar una escala de reactividad de los haluros ensayados.

Comparar con los valores de la literatura utilizados previamente.

Bibliografía

1.0 D. C. Harris

ANÁLISIS QUÍMICO CUANTITATIVO

Grupo Editorial Iberoamérica.

1991. **Pág. 242.**

2.0 A. Baeza

QUÍMICA ANALÍTICA. EXPRESIÓN GRÁFICA DE LAS REACCIONES QUÍMICAS.

S.y G. Editores. 2006.

3.0 Documento de Apoyo: Derivadas para datos pH

Adrián de Santiago Zárate

http://depa.fquim.unam.mx/amyd

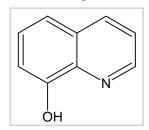
Q.A.I Alejandro Baeza

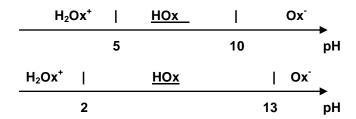
4.0 Alejandro Baeza, Adrián de Santiago, Eduardo Galicia.

"Titulaciones de Halogenuros a Microescala Total con Microsensores de Ag y Microreferencia de Bajo Costo sin Puente Salino"

Rev. Chil. Educ. Cient.3[1](2004)29-39

AMYD.


TP7 Reacciones de distribución. Extracción líquido-líquido de oxina.


Preguntas previas.

1.0 Consultar las propiedades químicas de la oxina⁽¹⁾:

8-hidroxi-quinolina

2.0 Trazar las curvas de titulación teóricas log[i] = f(pH) = f(f) de los siguientes sistemas dipróticos:

Guía experimental:

- A) Demostración del equilibrio de solubilidad.
- 1.0 Llenar una bureta de 10 mL con disolución de NaOH 0.1 mol/L.
- 2.0 En un vaso colocar 3 mL de cloruro de oxinio 0.1 M y H₂O c.b.p. 15 mL.
- 3.0 Introducir los electrodos combinados de vidrio-referencia calibrado para determinar el pH.
- 4.0 Determinar el pH para incrementos adicionados de NaOH de $\Delta v = 0.5$ mL hasta 10 mL con agitación constante. Esperar 1 minuto para registrar la lectura de pH.

- A) Demostración del equilibrio de distribución líquido-líquido.
- 1.0 Llenar una bureta de 10 mL con disolución de NaOH 0.1 mol/L.
- 2.0 En un vaso colocar 3 mL de cloruro de oxinio 0.1 M y H₂O c.b.p. 15 mL y 10 mL de CHCl₃.
- 3.0 Introducir los electrodos combinados de vidrio-referencia calibrado para determinar el pH en la fase acuosa.
- 4.0 Determinar el pH para incrementos adicionados de NaOH de $\Delta v = 0.5$ mL hasta 10 mL con agitación constante. Esperar 1 minuto para registrar la lectura de pH.

Preguntas para concluir.

1.0 Elaborar una tabla con los datos siguientes:

- Trazar juntas la gráfica de monitoreo $pH_A = f(volumen agregado)$ y $pH_B = f(volumen agregado)$. Explicar las formas de las curvas.
- 3.0 Elaborar las gráficas pH = f(v), $(\Delta pH/\Delta v)$ = f(v_{prom}) y $\Delta ((\Delta pH/\Delta v)/\Delta v_{prom}$ = f($v_{prom \ v \ prom}$)
- 4.0 Asignar los valores de pKa en sendos valores de pH para $v = (1/2)v_{equiv}$.
- 5.0 Con los valores arriba encontrados, deducir el valor de K_D para la oxina.

Bibliografía

- 1.0 Susan Budavari
 - THE MERCK INDEX. Eleventh Edition.1989. Pág. 769.
- 2.0 Secretaria de Salud
 - Farmacopea de los Estados Unidos Mexicanos. Sexta Edición. 1994. Pág. 513
- 3.0 Documento de Apoyo: Derivadas para datos pH
 - Adrián de Santiago Zárate. http://depa.fquim.unam.mx/amyd -->Q.A.I Alejandro Baeza
- 4.0 P. Morlaës et J.-C. Moralaës
 - LES SOLUTIONS AQUEUSES. Classes Préparatoires et Université. Exercices avec solutions Librairie Vuibert. 1979. Pag74
- 5.0 Alejandro Baeza, Juan Ramírez B.
 - "Valoraciones Bifásicas: Determinación de principios activos en medicamentos a p(Vo/Va)
 - Impuesto con monitoreo potenciométrico del punto final"
 - Anuario Latinoamericano de Educación Química (98-99)197-201

TP8 Reacciones de intercambio iónico. Selectividad en resina catiónica fuerte.

Preguntas previas.

- 1.0 Consultar el documento de la referencia (1) y elaborar un breve formulario útil para procesar los datos de esta práctica.
- 2.0 Calcular la cantidad de resina catiónica fuerte en forma ácida de capacidad científica aproximada de 4 mmol/g para ser neutralizada con 0.5 mL de NaOH de F = 0.1 mol/L.

Guía experimental:

- A) Determinación de la capacidad de la resina.
- 1.0 En una microcelda con microelectrodos para determinar el pH introducir aproximadamente 15 mg de resina catiónica fuerte en forma RH. Adicionar H₂O hasta cubrir los microelectrodos. Adicionar discrecionalmente cristales de NaCl con una espátula pequeña. Disolver.
- 2.0 Titular con NaOH 0,1 mol/L normalizada con monitoreo micropotenciométrico por adiciones de $\Delta v = 0.02$ mL hasta 1 mL con agitación micromagnética constante.

Preguntas para concluir.

- 1.0 Elaborar la gráfica pH = f(volumen agregado)
- 1.0 Elaborar la gráfica de primera derivada para determinar el volumen de equivalencia experimental.
- 3.0 Calcular la C_L

Bibliografía

- Adrián de Santiago
 Formulario de Intercambio Iónico.
 ADMYD →. Q. A.I. → Alejandro Baeza.
 2008.
- A. Baeza
 Química Analítica. Expresión Gráfica de las Reacciones Químicas.

 S.y G. Editores.
 2006