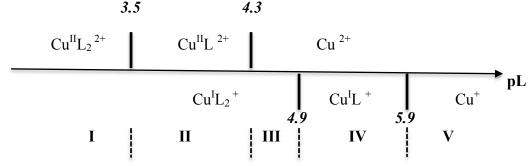
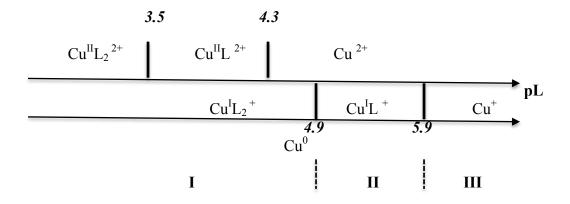
QUÍMICA ANALÍTICA II.


2017-I

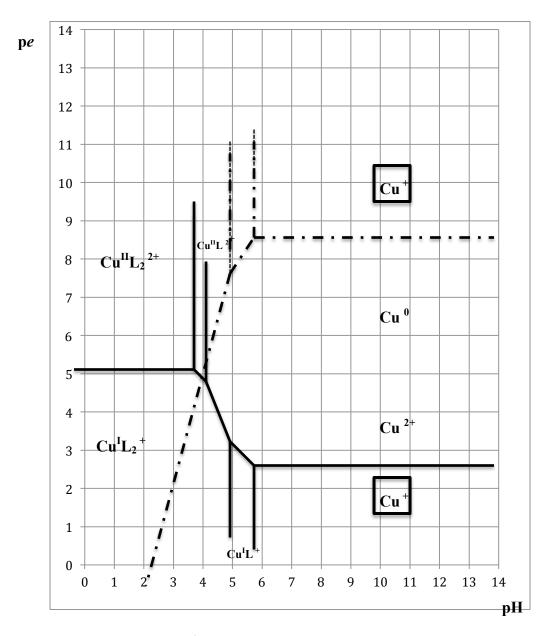
Ejercicio de clase: Diagrama pe = f(pL), para CuL_n^z , para z = 2,1,0 y $L = NH_3$. Dr. Alejandro Baeza.

Se proporciona la siguiente información (1):

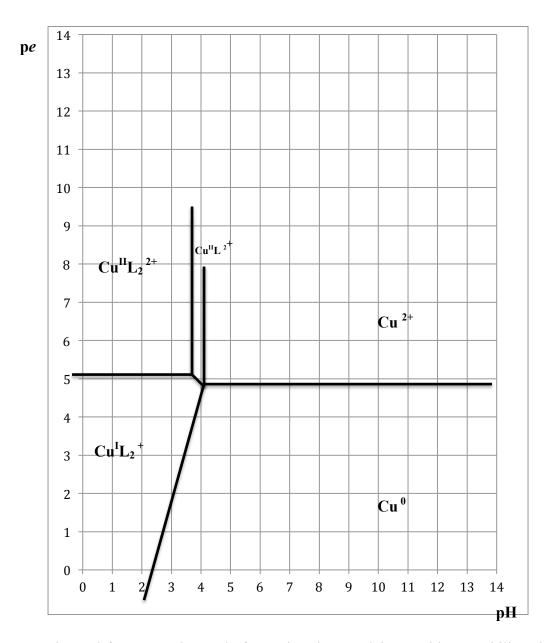
$$Cu^{2+}/Cu^{+}$$
 $E^{0} = 0.15 \text{ V}, \text{ pKr} = 2.5; Cu^{+}/Cu^{0} $E^{0} = 0.52 \text{ V}, \text{ pKr} = 8.7$$


En el siguiente *DUPE* combinado se muestran las zonas de predominio de los complejos amoniacales sin considerar la hidrólisis básica del amoniaco para el par Cu(II)/Cu(I):

Se muestran 5 zonas de predominio de especies. El diagrama se traza con base al *método gráfico rápido* en función de los equilibrios representativos de cada zona y de la relación electronio – ligante, *e* / L, como se resume en la siguiente tabla:


<u> zona</u>	intervalo	eg. químico representativo	e/L	m	
I II III IV V	0 - 3.5 3.5 - 4.3 4.3 - 4.9 4.9 - 5.9 > 5.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/0 1/1 1/2 1/1 0/0	0 -1 -2 -1 0	

Para el par Cu(I)/Cu(=) el *DUPE* respectivo queda de la siguiente manera:



Se muestran 3 zonas de predominio de especies. El diagrama también se traza con base al *método gráfico rápido* en función de los equilibrios representativos de cada zona y de la relación electronio – ligante, *e* / L, como se resume en la siguiente tabla:

zona	intervalo	eq. químico	e/L	m	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	
I III	0 - 4.9 4.9 - 5.9 > 5.9	$Cu^{I}L_{2}^{+} + 1e$ $Cu^{I}L^{+} + 1e^{-}$ $Cu^{+} + 1e^{-}$	$= Cu^{0} + 2L$ $= Cu^{0} + L$ $= Cu^{0}$	1/2 1/1 0/0	+2 +1 0	

Se observa que la especie Cu⁺ es inestable, generando el par global estable:

Se corrobora el fenómeno de que la formación de complejos estables estabiliza el estado inferior del catión Cu (I).

Bibliografia.

(1) P. et J. C. Morlaes. Exercices de Chimie. Solutions Aqueuses. Librerie Vuibert, Paris. 1979.