Capacitores y dieléctricos Tomado de:

Ohanian/Markert, Física para ciencias e ingeniería Vol. 2 Bauer/Westfall, Física para ingeniería y ciencias Vol. 2

Capacitancia

- Es la propiedad de los materiales conductores, de almacenar carga eléctrica (y por lo tanto energía potencia eléctrica) y luego liberarla rápidamente.
- Una definición general de capacitancia es el cociente entre la carga Q y el potencial o la diferencia de potencial del material conductor o conductores.

$$C = \frac{Q}{V}$$

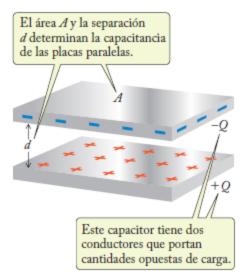
$$C = \frac{Q}{\Delta V}$$

 Se trata de una cantidad POSITIVA, por lo que no se consideran los signos de las cantidades involucradas. 2

Capacitancia

- Los Capacitores o Condensadores son arreglos para almacenar energía en un campo eléctrico.
- Son empleados en muchas aplicaciones comunes como
 - Desfibriladores cardíacos
 - Unidades flash para cámaras
- Constituyen una parte esencial de la electrónica.
 - A microescala para "chips" de computadora; de gran tamaño para circuitos de gran potencia como transmisores de radio de FM

Ejemplos de capacitores


Una esfera metálica aislada

 Capacitancia de un conductor aislado

$$Q = CV$$
 o $C = \frac{Q}{V}$

Dos placas paralelas muy grandes, con cargas eléctricas opuestas

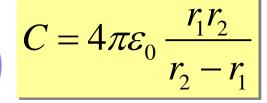
 Capacitancia de un par de conductores

$$Q = C \Delta V$$

o sea

$$C = \frac{Q}{\Delta V}$$

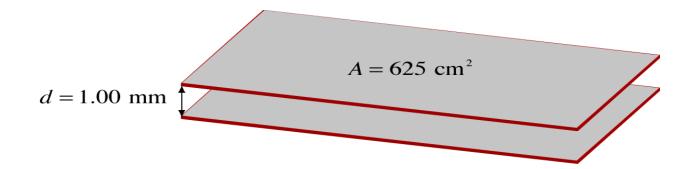
Expresiones de capacitancia en función de parámetros geométricos


• Capacitancia de un conductor esférico aislado

$$C = 4\pi\varepsilon_0 R$$

- Capacitancia de un capacitor de placas paralelas
 - A es el área de cada plato
 - d es la distancia entre los platos

- Capacitancia de un capacitor esférico
 - r_1 es el radio de la esfera interior
 - r_2 es el radio de la esfera exterior



- Capacitancia de un capacitor cilíndrico
 - r_1 es el radio del cilindro interior
 - r_2 es el radio del cilindro exterior

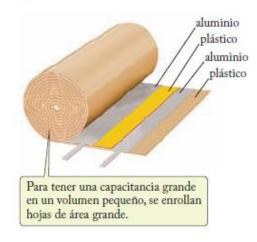
$$C = \frac{q}{V} = \frac{\lambda L}{\frac{\lambda}{2\pi\varepsilon_0} \ln(r_2/r_1)} = \frac{2\pi\varepsilon_0 L}{\ln(r_2/r_1)}$$

Ejemplo: Capacitancia de un capacitor de placas paralelas

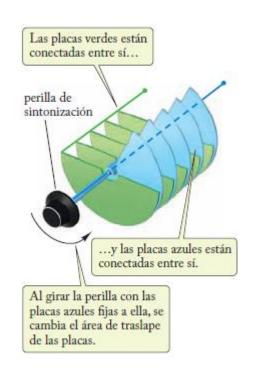
Se tiene un capacitor de placas paralelas construido a partir de dos placas planas de material conductor, cada una con un área de 625 cm² separadas por una distancia de 1.00 mm.

Haga las conversions necesarias y determine ¿Cuál es la capacitancia de este capacitor?

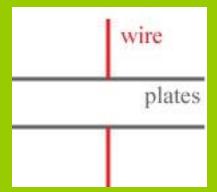
$$C = \frac{\varepsilon_0 A}{d}$$

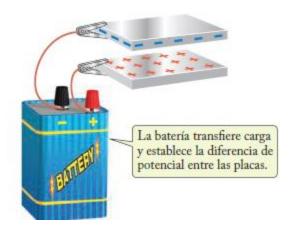

Tipos de capacitores

Un capacitor de dos conductores conectado a las terminales de una batería



b)

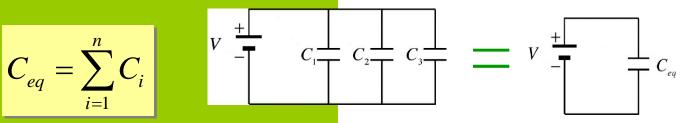

- a) Hojas de aluminio (conductores) separadas por una hoja de plástico (dieléctrico aislante)
- b) Capacitor enrollado



¿Cómo se representan los capacitores?

En la simbología de circuitos eléctricos, los capacitores se representan como:

que recuerda las dos placas (plates) y los alambres (wire) o terminales conductoras.

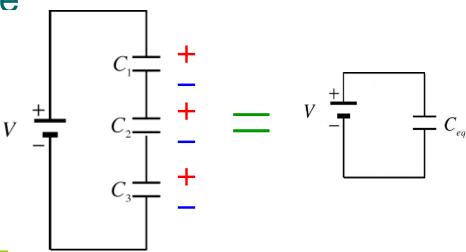


Un capacitor de placas paralelas conectado a las terminales de una batería

En los circuitos, los capacitores se pueden agrupar de dos maneras básicas: 1) En LÍNEAS PARALELAS

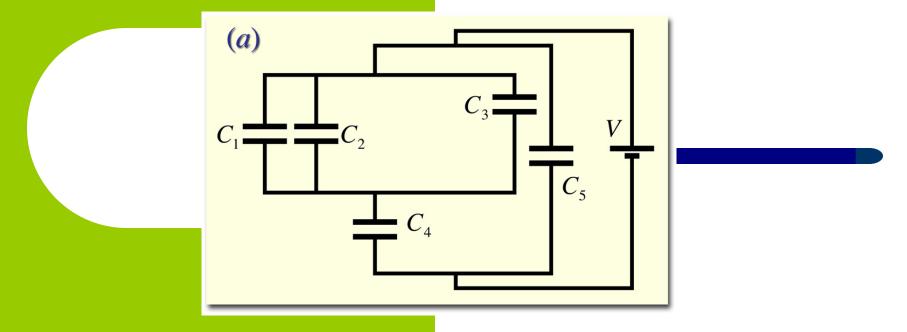
La Capacitancia equivalente para n capacitores agrupados en paralelo

$$C_{eq} = \sum_{i=1}^{n} C_{i}$$



La diferencia de potencial V a través de cada capacitor es la misma

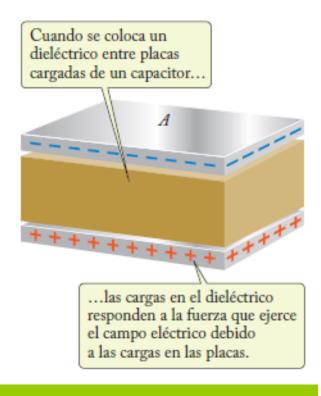
2) En SERIE (como las series de foquitos navideños)


La Capacitancia equivalente para *n* capacitores en serie

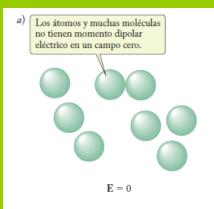
$$\frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

La batería produce una carga q igual en cada capacitor en serie, pues induce una carga positiva en la placa positiva de C_1 , la cual induce una carga negativa en la placa opuesta of C_1

Ejemplo: Sistema de varios Capacitores



Si cada capacitor tiene una capacitancia de 5 nF, ¿cuál es la capacitancia del sistema de capacitores ó capacitancia equivalente?


Vea la presentación 2, para la resolución PASO A PASO.

$$C_{12345} = C_{1234} + C_5 = \frac{C_{123}C_4}{C_{123} + C_4} + C_5 = \frac{(C_1 + C_2 + C_3)C_4}{C_1 + C_2 + C_3 + C_4} + C_5 = 8.75 \text{ nF}$$

Materiales Dieléctricos

Una capa de dieléctrico entre las placas de un capacitor

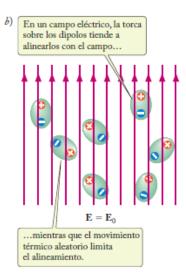
En un campo eléctrico,

los electrones y los núcleos

permanecen unidos entre sí...

 $\mathbf{E} = \mathbf{E}_0$

...pero se mueven ligeramente

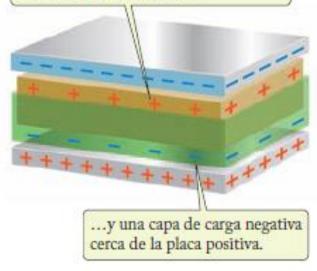

entonces un momento dipolar.

en direcciones opuestas; se induce

Dieléctricos

Algunas moléculas tienen un momento dipolar eléctrico permanente.

En un campo cero, los momentos se orientan al azar, con cero movimiento neto.



- a) Moléculas no distorsionadas (no polares)
- a) El campo eléctrico produce una distorsión en las moléculas
- a) Moléculas no alineadas (polares)
- b) El campo eléctrico produce un alineamiento parcial de las moléculas ya distorsionadas

Dieléctricos

Constante Dieléctrica K

El desplazamiento de cargas eléctricas produce una capa de carga positiva cerca de la placa negativa...

$$E = \frac{1}{\kappa} E_{\text{libre}}$$

Campo eléctrico en un dieléctrico

Material	Constante	Resistencia
	dieléctrica	Dielectrica
	κ	(kV/mm)
Air (1 atm)	1.00059	2.5
Polystyrene	2.6	20
Mylar	3.1	280
Paper	3.0	8
Water	80.4	3.1

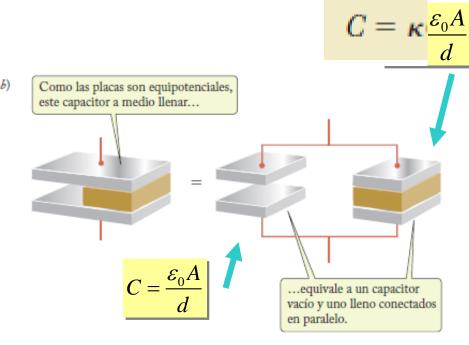
Las distribuciones de carga positiva y negativa, en la capa de dieléctrico no pueden traslaparse con exactitud. Entonces, el campo eléctrico produce una separación de cargas


$$C = \kappa \frac{\varepsilon_0 A}{d}$$

Capacitancia de un capacitor 14
 Ileno con dieléctrico

Dieléctricos

El rompimiento eléctrico en un bloque de plexiglás (un plástico), en un campo eléctrico muy intenso, causó diminutas perforaciones en el bloque y formó esta bella figura arbórea.


El material dieléctrico evita que esto le pase a los materiales conductores, pues esto dañaría el capacitor.

Capacitores con Dieléctricos ¿Cómo se resuelven?

Un capacitor de placas paralelas de área A con una capa de dieléctrico que sólo tiene la mitad del área de las placas

Circuito equivalente de capacitores

(cuidado con el área A que utiliza!!!)