CHAPTER 32

CURRENT AND
RESISTANCE

The previous five chapters dealt with electrostatics, that is, with

charges at rest. With this chapter we begin our study of electric currents, that
is, of charges in motion.

Examples of electric currents abound, ranging from the large currents that constitute
lightning strokes to the tiny nerve currents that regulate our muscular activity. We are
Jamiliar with currents resulting from charges flowing through solid conductors (household
wiring, light bulbs), semiconductors (integrated circuits), gases (fluorescent lamps), liquids
(automobile batteries), and even evacuated spaces (TV picture tubes).

On a global scale, charged particles trapped in the Van Allen radiation belts surge back and
Sorth above the atmosphere between the north and the south magnetic poles. On the scale of
the solar system, enormous currents of protons, electrons, and ions travel radially outward
from the Sun as the solar wind. On the galactic scale, cosmic rays, which are largely
energetic protons, stream through the galaxy.

32-1 ELECTRIC CURRENT

The free electrons in an isolated metallic conductor, such
as the length of wire illustrated in Fig. 1a, are in random
motion like the molecules of a gas confined to a container.
They have no net directed motion along the wire. If we
pass a hypothetical plane through the wire, the rate at
which electrons cross that plane in one direction is equal
to the rate at which they cross in the other direction; the
net rate is zero. (Here we assume our observation time is
long enough so that the small statistical fluctuations in the
number of electrons crossing the plane average to zero. In
some cases, the fluctuations can be important. For exam-
ple, they contribute to the electrical noise in circuits.)

Whether the conductor of Fig. 1a is charged or un-
charged, there is no net flow of charge in its interior. In the
absence of an externally applied field, no electric field
exists within the volume of the conductor or parallel to its
surface. Even though an abundance of conduction elec-
trons is available, there is no force on the electrons and no
net flow of charge.

In Fig. 1b, a battery has been connected across the ends
of the conductor. If the battery maintains a potential dif-
ference 7 and the wire has length L, then an electric field

of magnitude V/L is established in the conductor. This
electric field E acts on the electrons and gives them a net
motion in the direction opposite to E. If the battery could
maintain the potential difference, then the charges would
continue to circulate indefinitely. In reality, a battery can
maintain the current only as long as it is able to convert
chemical energy to electrical energy; eventually the bat-
tery’s source of energy is exhausted, and the potential
difference cannot be maintained.

The existence of an electric field inside a conductor
does not contradict Section 29-4, in which we asserted
that E equals zero inside a conductor. In that section,
which dealt with a state in which all net motion of charge
had stopped (electrostatics), we assumed that the conduc-
tor was insulated and that no potential difference was
deliberately maintained between any two points on it, as
by a battery. In this chapter, which deals with charges in
motion, we relax this restriction.

If a net charge dq passes through any surface in a time
interval dt, we say that an electric current i has been estab-
lished, where

i=dgq/ds. (1)

For current in a wire, we take dqg to be the charge that
passes through a cross section in the time dt.
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Figure 1 (a) In an isolated conductor, the electrons are in
random motion. The net flow of charge across an arbitrary
plane is zero. (b) A battery B connected across the conductor
sets up an electric field E, and the electrons acquire a net mo-
tion due to the field.

Note that we require a net charge dg to flow for a
current to be established. In Fig. 14, equal numbers of
electrons are flowing in both directions across the plane;
even though there may be a considerable number of elec-
trons flowing across the plane, the current is zero. For
another example, the flow of water through a garden hose
does not give rise to an electric current according to our
definition because the electrically neutral molecules flow-
ing across any surface carry equal positive and negative
charges; thus the net flow of charge is zero.

The SI unit of current is the ampere (abbreviation A).
According to Eq. 1, we have

1 ampere = 1 coulomb/second.

You will recall from Section 27-4 that Eq. 1 provides the
definition of the coulomb, because the ampere is a SI base
unit (see Appendix A). The determination of this funda-
mental quantity is discussed in Section 35-4.

The net charge that passes through the surface in any
time interval is found by integrating the current:

q= f idt. 2)

If the current is constant in time, then the charge g that
flows in time ¢ determines the current i according to

i=g/t. 3)

In this chapter we consider only currents that are constant
in time; currents that vary with time are considered in
Chapter 33. Although there are many different kinds of
currents (some of which are mentioned in the introduc-

tion), in this chapter we restrict our discussion to electrons
moving through solid conductors.

We assume that, under steady conditions, charge does
not collect at or drain away from any point in our ideal-
ized wire. In the language of Section 18-2, there are no
sources or sinks of charge in the wire. When we made this
assumption in our study of incompressible fluids, we con-
cluded that the rate at which the fluid flows past any cross
section of a pipe is the same even if the cross section
varies. The fluid flows faster where the pipe is smaller and
slower where it is larger, but the volume rate of flow,
measured perhaps in liters/second, remains constant. In
the same way, the electric current i is the same for all cross
sections of a conductor, even though the cross-sectional
area may be different at different points.

Although in metals the charge carriers are electrons, in
electrolytes or in gaseous conductors (plasmas) they may
also be positive or negative ions, or both. We need a con-
vention for labeling the direction of current because
charges of opposite sign move in opposite directions in a
given field. A positive charge moving in one direction is
equivalent in nearly all external effects to a negative
charge moving in the opposite direction. Hence, for sim-
plicity and algebraic consistency, we adopt the following
convention:

The direction of current is the direction that positive
charges would move, even if the actual charge carriers
are negative.

If the charge carriers are negative, they simply move op-
posite to the direction of the current arrow (see Fig. 15).

Under most circumstances, we analyze electric circuits
based on an assumed direction for the current, without
taking into account whether the actual charge carriers are
positive or negative. In rare cases (see, for example, the
Hall effect in Section 34-4) we must take into account the
sign of the charge carriers.

Even though we assign it a direction, current is a scalar
and not a vector. The arrow that we draw to indicate the
direction of the current merely shows the sense of the
charge flow through the wire and is not to be taken as a
vector. Current does not obey the laws of vector addition,
as can be seen from Fig. 2. The current i, in wire 1 divides
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Figure 2 (a) At point P, the current i, divides into currents i,
and i,, such that i, = i, + ;. (b) Changing the direction of the
wires does not change the way the currents add, illustrating
that currents add like scalars, not like vectors.



into two branches i, and i, in wires 2 and 3, such that
i; = i, + i;. Changing the directions of the wires does not
change the way the currents are added, as it would if they
added like vectors.

32-2 CURRENT DENSITY

The current / is a characteristic of a particular conductor.
It is a macroscopic quantity, like the mass of an object, the
volume of an object, or the length of a rod. A related
microscopic quantity is the current density j. It is a vector
and is characteristic of a point inside a conductor rather
than of the conductor as a whole. If the current is distrib-
uted uniformly across a conductor of cross-sectional area
A, asin Fig. 3, the magnitude of the current density for all
points on that cross section is

j=i/A. )

The vector j at any point is oriented in the direction that a
positive charge carrier would move at that point. An elec-
tron at that point moves in the direction —j. In Fig. 3, jisa
constant vector and points to the left; the electrons drift to
the right.

In general, for a particular surface (which need not be
plane) that cuts across a conductor, i is the flux of the
vector j over that surface, or

i=fj-dA, (%)

where dA is an element of surface area and the integral is
done over the surface in question. The vector dA is taken
to be perpendicular to the surface element such that j+ dA
is positive, giving a positive current i. Equation 4 (written
as i = jA) is a special case of Eq. 5 in which the surface of
integration is a plane cross section of the conductorandin
which j is constant over this surface and at right angles to
it. However, we may apply Eq. 5 to any surface through
which we wish to know the current. Equation 5 shows
clearly that i is a scalar because the integrand j-dA is a
scalar.

Figure 3 The electric field causes electrons to drift to the
right. The conventional current (the hypothetical direction of
flow of positive charge) is to the left. The current density j is
likewise drawn as if the charge carriers were positive, so that j
and E are in the same direction.
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The electric field exerts a force (= —¢E) on the elec-
trons in a conductor but this force does not produce a net
acceleration because the electrons keep colliding with the
atoms or ions that make up the conductor. This array of
ions, coupled together by strong springlike forces of elec-
tromagnetic origin, is called the lattice (see Fig. 11 of
Chapter 14). The overall effect of the collisions is to
transfer kinetic energy from the accelerating electrons
into vibrational energy of the lattice. The electrons ac-
quire a constant average drift speed v, in the direction
—E. There is a close analogy to a ball falling in a uniform
gravitational field g at a constant terminal speed through a
viscous fluid. The gravitational force (mg) acting on the
falling ball does not increase the ball’s kinetic energy
(which is constant); instead, energy is transferred to the
fluid by molecular collisions and produces a small rise in
temperature.

We can compute the drift speed v, of charge carriersin a
conductor from the current density j. Figure 3 shows the
conduction electrons in a wire moving to the right at an
assumed constant drift speed v4. The number of conduc-
tion electrons in a length L of the wire is n4L, where n is
the number of conduction electrons per unit volume and
AL is the volume of the length L of the wire. A charge of
magnitude

g= (ndL)e

passes out of this segment of the wire, through its right
end, in a time ¢ given by

Vq
The current i is
q ndALe
=4 _ = a4
i = I, evy

Solving for v4 and recalling that j = i/4 (Eq. 4), we obtain
i J
vg=——=—"—, 6

¢ nde ne ©)

Since both v, and j are vectors, we can rewrite Eq. 6 asa

vector equation. We follow our adopted convention for

positive current density, which means we must take the

direction of j to be opposite to that of v, The vector
equivalent of Eq. 6 is therefore

j=—nev,. N

Figure 3 shows that, for electrons, these vectors are indeed
in opposite directions.

As the following sample problems illustrate, the drift
speed in typical conductors is quite small, often of the
order of cm/s. In contrast, the random thermal motion of
conduction electrons in a metal takes place with typical
speeds of 10 m/s.

Sample Problem1 One end of an aluminum wire whose diam-
eter is 2.5 mm is welded to one end of a copper wire whose
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diameter is 1.8 mm. The composite wire carries a steady current
iof 1.3 A. What is the current density in each wire?

Solution We may take the current density as (a different) con-
stant within each wire except for points near the junction. The
current density is given by Eq. 4,

j=

-

The cross-sectional area A4 of the aluminum wire is

1

Apy = 5 7d? = (n/4)(2.5 X 103 m)? = 4.91 X 1076 m?

&~

so that

1.3A
e e—— = 5 2 = 2
I = T 10 2 2.6 X 10° A/m? =26 A/cm?.
As you can verify, the cross-sectional area of the copper wire is
2.54 X 1075 m?, so that

. 1.3A _ s L ,
Jo=35ax10mz 21 X 10°A/m* =51 Afem?’.
The fact that the wires are of different materials does not enter

here.

Sample Problem 2 What is the drift speed of the conduction
electrons in the copper wire of Sample Problem 1?

Solution The drift speed is given by Eq. 6,
J

=

ne

In copper, there is very nearly one conduction electron per
atom on the average. The number # of electrons per unit volume
is therefore the same as the number of atoms per unit volume
and is given by

atoms/m*® _ mass/m?
atoms/mol  mass/mol

N _ Pm

N, M

Here p,, is the (mass) density of copper, N, is the Avogadro
constant, and M is the molar mass of copper.* Thus

ne Naprm _ (6.02 X 10% electrons/mol}(8.96 X 10° kg/m?)
M 63.5 X 1073 kg/mol
= 8.49 X 10?8 electrons/m?3.
We then have
5.1 X 10° A/m?
Vg

- (8.49 X 10?8 electrons/m>)(1.60 X 10~'° C/electron)
= 3.8 X 1075 m/s = 14 cm/h.

You should be able to show that for the aluminum wire, v, =
2.7 X 1073 m/s = 9.7 cm/h. Can you explain, in physical terms,
why the drift speed is smaller in aluminum than in copper, even
though the two wires carry the same current?

* We use the subscript m to make it clear that the density re-
ferred to here is a mass density (kg/m3), not a charge density
(C/m3).

If the electrons drift at such a low speed, why do electrical
effects seem to occur immediately after a switch is thrown, such
as when you turn on the room lights? Confusion on this point
results from not distinguishing between the drift speed of the
electrons and the speed at which changes in the electric field
configuration travel along wires. This latter speed approaches
that of light. Similarly, when you turn the valve on your garden
hose, with the hose full of water, a pressure wave travels along the
hose at the speed of sound in water. The speed at which the water
moves through the hose — measured perhaps with a dye marker
—is much lower.

Sample Problem3 A strip of silicon, of width w = 3.2 mm and
thickness d = 250 um, carries a current { of 190 mA. The silicon
is an n-type semiconductor, having been “doped” with a con-
trolled amount of phosphorus impurity. The doping has the
effect of greatly increasing #, the number of charge carriers (elec-
trons, in this case) per unit volume, as compared with the value
for pure silicon. In this case, # = 8.0 X 102! m~3, (g) What is the
current density in the strip? () What is the drift speed?

Solution (a) From Eq. 4,

i 190 X 1073 A
I wd T 32X 10 m)250 X 10~ m)
=2.4X 10° A/m2.

(b) From Eq. 6,
J 2.4 X 10° A/m?
n

Dd=—_

e (8.0X 102 m=3)1.60 X 10~ C)
= 190 m/s.

The drift speed (190 m/s) of the electrons in this silicon semicon-
ductor is much greater than the drift speed (3.8 X 1075 m/s) of
the conduction electrons in the metallic copper conductor of
Sample Problem 2, even though the current densities are similar.
The number of charge carriers in this semiconductor (8.0 X 102!
m™3) is much smaller than the number of charge carriers in the
copper conductor (8.49 X 102 m~3), The smaller number of
charge carriers must drift faster in the semiconductor if they are
to establish the same current density that the greater number of
charge carriers establish in copper.

32-3 RESISTANCE, RESISTIVITY,
AND CONDUCTIVITY

If we apply the same potential difference between the ends
of geometrically similar rods of copper and of wood, very
different currents result. The characteristic of the conduc-
tor that enters here is its resistance. We determine the
resistance of a conductor between two points by applying
a potential difference " between those points and mea-
suring the current / that results. The resistance R is then

R=V/i. (8)

If V is in volts and i in amperes, the resistance R is in



volts/ampere, which is given the name of ohms (abbrevia-
tion ), such that

1 ohm = 1 volt/ampere.

A conductor whose function in a circuit is to provide a
specified resistance is called a resistor (symbol “WW\-).

The flow of charge through a conductor is often com-
pared with the flow of water through a pipe as a result of a
difference in pressure between the ends of the pipe, estab-
lished perhaps by a pump. The pressure difference is anal-
ogous to the potential difference between the ends of a
conductor, established perhaps by a battery. The rate of
flow of water (liters/second, say) is analogous to the rate of
flow of charge (coulombs/second, or amperes). The rate
of flow of water for a given pressure difference is deter-
mined by the nature of the pipe: its length, cross section,
and solid interior impediments (for instance, gravel in the
pipe). These characteristics of the pipe are analogous to
the resistance of a conductor.

The ohm is not a SI base unit (see Appendix A); no
primary standard of the ohm is kept and maintained.
However, resistance is such an important quantity in
science and technology that a practical reference standard
is maintained at the National Institute of Standards and
Technology. Since January 1, 1990, this representation of
the ohm (as it is known) has been based on the quantum
Hall effect (see Section 34-4), a precise and highly repro-
ducible quantum phenomenon that is independent of the
properties of any particular material.

Related to resistance is the resistivity p, which is a char-
acteristic of a material rather than of a particular speci-
men of a material; it is defined by

E
=-. (9)

p J
The units of p are those of E (V/m) divided by j (A/m?),
which are equivalent to £2-m. Figure 3 indicates that £
and j are vectors, and we can write Eq. 9 in vector form as

(10)

Equations 9 and 10 are valid only for isotropic materials,
whose electrical properties are the same in all directions.

The resistivity of copper is 1.7 X 107® Q-m; that of
fused quartz is about 10'¢ Q- m. Few physical properties
are measurable over such a range of values. Table 1 lists
resistivities for some common materials.

Some substances cannot readily be classified as con-
ductors or insulators. Plastics generally have large resisti-
vities that would lead us to classify them with the insula-
tors. For example, household electrical wiring normally
uses plastic for insulation. However, by doping plastics
with certain chemicals, their conductivity can match that
of copper.*

E = pj.

* See “Plastics that Conduct Electricity,” by Richard B. Kaner
and Alan G. MacDiarmid, Scientific American, February 1988,
p. 106.
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TABLE 1 RESISTIVITY OF SOME MATERIALS
AT ROOM TEMPERATURE (20°C)

Temperature
Coefficient
Resistivity, of Resistivity
Material p (-m) o (per C°)
Typical Metals
Silver 1.62X 1078 41X1073
Copper 1.69 X 1078 43X 1073
Aluminum 275X 1078 44X1073
Tungsten 525X 1078 45X 1073
Iron 9.68 X 1078 6.5X 1073
Platinum 10.6 X 1078 39X1073
Manganin?® 48.2 X 1078 0.002 X 1073
Typical Semiconductors
Silicon pure 2.5X 103 —~70X 1073
Silicon n-type? 8.7 X 10~
Silicon p-type* 2.8X 1073
Typical Insulators
Glass 1010~ 10
Polystyrene > 10
Fused quartz =~ 1016

2 An alloy specifically designed to have a small value of a.

b Pure silicon “doped” with phosphorus impurities to a charge
carrier density of 102> m=3,

¢ Pure silicon “doped” with aluminum impurities to a charge carrier
density of 102 m=3,

Sometimes we prefer to speak of the conductivity o of a
material rather than its resistivity. These are reciprocal
quantities, related by

o= 1/p. (1)

The SI units of o are (€ -m)~'. Equation 10 can be written
in terms of the conductivity as

j=odE. (12)

If we know the resistivity p of a material, we should be
able to calculate the resistance R of a particular piece of
the material. Consider a cylindrical conductor, of cross-
sectional area 4 and length L carrying a steady current i
with a potential difference V' between its ends (see Fig. 4).
If the cylinder cross sections at each end are equipotential
surfaces, the electric field and the current density are con-
stant for all points in the cylinder and have the values

Figure 4 A potential difference V is applied across a cylin-
drical conductor of length L and cross-sectional area A, estab-
lishing a current i.
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The resistivity p is
_E_VIL
PmT T4
But V/i is the resistance R, which leads to
L

We stress that Eq. 13 applies only to a homogeneous,
isotropic conductor of uniform cross section subject to a
uniform electric field.

Sample Problem4 A rectangular block of iron has dimensions
1.2cm X 1.2cm X 15 cm. (@) What is the resistance of the block
measured between the two square ends? (b) What is the resist-
ance between two opposing rectangular faces? The resistivity of
iron at room temperature is 9.68 X 1078 Q-m.

Solution (a) The area of a square end is (1.2 X 1072 m)? or
1.44 X 10~* m2. From Eq. 13,
R PL _ (968 X107 Q- m)0.15 m)
A 1.44 X 107* m?
=1.0X 10~ Q= 100 Q.
(b) The area of a rectangular face is (1.2 X 1072 m)(0.15 m) or
1.80 X 1073 m2 From Eq. 13,
R= & _ (9.68 X 1078 Q-m)(1.2 X 1072 m)
A 1.80 X 1073 m?
=6.5X 1077 Q = 0.65 uQ.
We assume in each case that the potential difference is applied to
the block in such a way that the surfaces between which the

resistance is desired are equipotentials. Otherwise, Eq. 13 would
not be valid.

Microscopic and Macroscopic Quantities (Optional)
V, i, and R are macroscopic quantities, applying to a particular
body or extended region. The corresponding microscopic quan-
tities are E, j, and p (or ¢); they have values at every point in a
body. The macroscopic quantities are related by Eq. 8 (V' = iR)
and the microscopic quantities by Eqgs. 9, 10, and 12.

The macroscopic quantities can be found by integrating over
the microscopic quantities, using relations already given,

namely,
i= f j-dA

b
V,,,,=—Vba=f E-ds.
a

and

The current integral is a surface integral, carried out over any
cross section of the conductor. The field integral is a line integral
carried out along an arbitrary line drawn along the conductor,
connecting any two equipotential surfaces, identified by a and b.
For a long wire connected to a battery, equipotential surface a
might be chosen as a cross section of the wire near the positive
battery terminal, and b might be a cross section near the negative
terminal.

We can express the resistance of a conductor between g and b
in microscopic terms by dividing the two equations:

)
E-ds
etel

[ran

Ifthe conductor is a long cylinder of cross section 4 and length L,
and if points a and b are its ends, the above equation for R
reduces to
EL L
== =P
jA A
which is Eq. 13.

The macroscopic quantities V, /, and R are of primary interest
when we are making electrical measurements on real conducting
objects. They are the quantities whose values are indicated on
meters. The microscopic quantities E, j, and p are of primary
importance when we are concerned with the fundamental behav-
ior of matter (rather than of specimens of matter), as we usually
are in the research area of solid state (or condensed matter)
physics. Section 32-5 accordingly deals with an atomic view of
the resistivity of a metal and not of the resistance of a metallic
specimen. The microscopic quantities are also important when
we are interested in the interior behavior of irregularly shaped
conducting objects. H

Temperature Variation of Resistivity (Optional)

Figure 5 shows a summary of some experimental measurements
of the resistivity of copper at different temperatures. For practi-
cal use of this information, it would be helpful to express it in the
form of an equation. Over a limited range of temperature, the
relationship between resistivity and temperature is nearly linear.
We can fit a straight line to any selected region of Fig. 5, using
two points to determine the slope of the line. Choosing a refer-
ence point, such as that labeled T,, p, in the figure, we can
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Figure 5 The dots show selected measurements of the resis-
tivity of copper at different temperatures. Over any given
range of temperature, the variation in the resistivity with T
can be approximated by a straight line; for example, the line
shown fits the data from about — 100°C to 400°C.



express the resistivity p at an arbitrary temperature T from the
empirical equation of the straight line in Fig. 5, which is

P = Po=poc(T — Ty). (14)

[This expression is very similar to that for linear thermal expan-
sion (AL = L AT), which we introduced in Section 22-5.] We
have written the slope of this line as p,a. If we solve Eq. 14 for ¢,
we obtain
—_ 1 p—py
a WT=T, (15)
The quantity & is the mean (or average) temperature coefficient
of resistivity over the region of temperature between the two
points used to determine the slope of the line. We can define a
more general temperature coefficient of resistivity as
_ladp
a > dT’ (16)
which is the fractional change in resistivity dp/p per change in
temperature d7. That is, & gives the dependence of resistivity on
temperature at a particular temperature, while a gives the aver-
age dependence over a particular interval. The coefficient ais in
general dependent on temperature.

For most practical purposes, Eq. 14 gives results that are
within the acceptable range of accuracy. Typical values of & are
given in Table 1. For more precise work, such as the use of the
platinum resistance thermometer to measure temperature (see
Section 22-3), the linear approximation is not sufficient. In this
case we can add termsin (T — Tp)?and (T — T,)* to the right side
of Eq. 14 to improve the precision. The coefficients of these
additional terms must be determined empirically, in analogy
with the coefficient @ in Eq. 14. =

32-4 OHM’S LAW

Let us select a particular sample of conducting material,
apply a uniform potential difference across it, and meas-
ure the resulting current. We repeat the measurement for
various values of the potential difference and plot the
results, as in Fig. 6a. The experimental points clearly fall
along a straight line, which indicates that the ratio V/i (the
inverse of the slope of the line) is a constant. The resist-
ance of this device is a constant, independent of the po-
tential difference across it or the current through it. Note
that the line extends to negative potential differences and
currents.

In this case, we say that the material obeys Qhm’s law:

A conducting device obeys Ohm’s law if the resistance
between any pair of points is independent of the mag-
nitude and polarity of the applied potential difference.

A material or a circuit element that obeys Ohm’s law is
called ohmic.

Modern electronic circuits also depend on devices that
do not obey Ohm’s law. An example of the current—
voltage relationship for a nonohmic device (a prn junction
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diode) is shown in Fig. 6b. Note that the current does not
increase linearly with the voltage, and also note that the
device behaves very differently for negative potential dif-
ferences than it does for positive ones.

We stress that the relationship ' = [Ris not a statement
of Ohm’s law. A conductor obeys Ohm’s law only if its V'
versus i graph is linear, that is, if R isindependent of V"and
i. The relationship R = V/i remains as the general defini-
tion of the resistance of a conductor whether or not the
conductor obeys Ohm’s law.

The microscopic equivalent of the relationship V' = iR
is Eq. 10, E = pj. A conducting material is said to obey
Ohm’s law if a plot of E versus j is linear, that is, if the
resistivity p is independent of E and j. Ohm’s law is a
specific property of certain materials and is not a general
law of electromagnetism, for example, like Gauss’ law.

Analogy Between Current and Heat Flow (Optional)
A close analogy exists between the flow of charge established by a
potential difference and the flow of heat established by a temper-
ature difference. Consider a thin electrically conducting slab of
thickness Ax and area A. Let a potential difference A V' be main-
tained between opposing faces. The current i is given by Egs. 8
(i=V/R)and 13 (R=pL/A), or

Ve Vo (= WA __ (V= VoA

R pL pAx
In the limiting case of a slab of thickness dx this becomes

av
j=—plg 2l
i prA—

or, replacing the inverse of the resistivity by the conductivity o,
dqg dv

prin oA o a7n

The minus sign in Eq. 17 indicates that positive charge flows in
the direction of decreasing V; that is, dq/dt is positive when

dV/dx is negative.
The analogous heat flow equation (see Section 25-7) is
do dT
—==—kAd—, 18
d ax (18)
+4 +10
+8
+2 6
+
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Figure 6 (a) A current-voltage plot for a material that obeys
Ohm’s law, in this case a 1000-€ resistor. (b) A current~
voltage plot for a material that does not obey Ohm’s law, in
this case a pn junction diode.
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which shows that &, the thermal conductivity, corresponds to o,
and dT/dx, the temperature gradient, corresponds to dV/dx, the
potential gradient. For pure metals there is more than a formal
mathematical analogy between Eqs. 17 and 18. Both heat energy
and charge are carried by the free electrons in such metals; empir-
ically, a good electrical conductor (silver, say) is also a good heat
conductor, and the electrical conductivity o is directly related to
the thermal conductivity k. B

32-5 OHM’S LAW: A
MICROSCOPIC VIEW

As we discussed previously, Ohm’s law is not a funda-
mental law of electromagnetism because it depends on
the properties of the conducting medium. The law is very
simple in form, and it is curious that many materials obey
it so well, whereas other materials do not obey it at all. Let
us see if we can understand why metals obey Ohm’s law,
which we shall write (see Eq. 10) in the microscopic form
E =pj.

In a metal the valence electrons are not attached to
individual atoms but are free to move about within the
lattice and are called conduction electrons. In copper there
is one such electron per atom, the other 28 remaining
bound to the copper nuclei to form ionic cores.

The theory of electrical conduction in metals is often
based on the fiee-electron model, in which (as a first ap-
proximation) the conduction electrons are assumed to
move freely throughout the conducting material, some-
what like molecules of gas in a container. In fact, the
assembly of conduction electrons is sometimes called an
electron gas. As we shall see, however, we cannot neglect
the effect of the ion cores on this “gas.”

The classical Maxwellian velocity distribution (see Sec-
tion 24-3) for the electron gas would suggest that the con-
duction electrons have a broad distribution of velocities
from zero to infinity, with a well-defined average. How-
ever, in considering the electrons we cannot ignore quan-
tum mechanics, which gives a very different view. In the
quantum distribution (see Fig. 16 of Chapter 24) the elec-
trons that readily contribute to electrical conduction are
concentrated in a very narrow interval of kinetic energies
and therefore of speeds. To a very good approximation,
we can assume that the electrons move with a uniform
average speed. In the case of copper, this speed is about
v = 1.6 X 10°m/s. Furthermore, whereas the Maxwellian
average speed depends strongly on the temperature, the
effective speed obtained from the quantum distribution is
nearly independent of temperature.

In the absence of an electric field, the electrons move
randomly, again like the molecules of gas in a container.
Occasionally, an electron collides with an ionic core of the
lattice, suffering a sudden change in direction in the pro-
cess. As we did in the case of collisions of gas molecules,
we can associate a mean free path 4 and a mean free time ¢
to the average distance and time between collisions. (Col-

lisions between the electrons themselves are rare and do
not affect the electrical properties of the conductor.)

In an ideal metallic crystal (containing no defects or
impurities) at 0 K, electron -lattice collisions would not
occur, according to the predictions of quantum physics;
that is, A = © as T— 0 K for ideal crystals. Collisions
take place in actual crystals because (1) the ionic cores at
any temperature 7 are vibrating about their equilibrium
positions in a random way; (2) impurities, that is, foreign
atoms, may be present; and (3) the crystal may contain
lattice imperfections, such as missing atoms and dis-
placed atoms. Consequently, the resistivity of a metal can
be increased by (1) raising its temperature, (2) adding
small amounts of impurities, and (3) straining it severely,
as by drawing it through a die, to increase the number of
lattice imperfections.

When we apply an electric field to a metal, the electrons
modify their random motion in such a way that they drift
slowly, in the opposite direction to that of the field, with
an average drift speed v4. This drift speed is very much less
(by a factor of something like 10'%; see Sample Problem 2)
than the effective average speed v. Figure 7 suggests the
relationship between these two speeds. The solid lines
suggest a possible random path followed by an electron in
the absence of an applied field; the electron proceeds from
X to y, making six collisions on the way. The dashed lines
show how this same event might have occurred if an elec-
tric field E had been applied. Note that the electron drifts
steadily to the right, ending at y’ rather than at y. In
preparing Fig. 7, it has been assumed that the drift speed
g i 0.022; actually, it is more like 107'%, so that the
“drift” exhibited in the figure is greatly exaggerated.

We can calculate the drift speed v, in terms of the ap-
plied electric field E and of vand A. When a field is applied
to an electron in the metal, it experiences a force eE,

Figure 7 The solid line segments show an electron moving
from x to y, making six collisions en route. The dashed lines
show what its path might have been in the presence of an ap-
plied electric field E. Note the gradual but steady drift in the
direction of —E. (Actually, the dashed lines should be slightly
curved to represent the parabolic paths followed by the elec-
trons between collisions.)



which imparts to it an acceleration a given by Newton’s
second law,
_ekE
o

Consider an electron that has just collided with an ion
core. The collision, in general, momentarily destroys the
tendency to drift, and the electron has a truly random
direction after the collision. During the time interval to
the next collision, the electron’s speed changes, on the
average, by an amount a(A/v) or at, where 7 is the mean
time between collisions. We identify this with the drift
speed vy, or*

yy=ar=—. (19)
We may also express v, in terms of the current density
(Eq. 6), which gives

i _ ek
ne m’

d

Combining this with Eq. 9 (p = E/j), we finally obtain

m

P= e (20)

Note that m, n, and e in this equation are constants.
Thus Eq. 20 can be taken as a statement that metals obey
Ohm’s law if we can show that 7 is a constant. In particu-
lar, we must show that T does not depend on the applied
electric field E. In this case p does not depend on E, which
(see Section 32-4) is the criterion that a material obey
Ohm’s law. The quantity 7 depends on the speed distribu-
tion of the conduction electrons. We have seen that this
distribution is affected only very slightly by the applica-
tion of even a relatively large electric field, since vis of the
order of 106 m/s, and v, (see Sample Problem 2) is only of
the order of 10~* m/s, a ratio of 10'°. Whatever the value
of 7 is (for copper at 20°C, say) in the absence of a field, it
remains essentially unchanged when the field is applied.
Thus the right side of Eq. 20 is independent of E (which

* It may be tempting to write Eq. 19 as v, = iat, reasoning that
ar is the electron’s final velocity, and thus that its average veloc-
ity is half that value. The extra factor of § would be correct if we
followed a typical electron, taking its drift speed to be the average
of its velocity over its mean time 7 between collisions. However,
the drift speed is proportional to the current density j and must
be calculated from the average velocity of all the electrons taken
at one instant of time. For each electron, the velocity at any time
is at, where ¢ is the time since the last collision for that electron.
Since the acceleration a is the same for all electrons, the average
value of at at a given instant is at, where 7 is the average time
since the last collision, which is the same as the mean time
between collisions. For a discussion of this point, see Electricity
and Magnetism, 2nd ed., by Edward Purcell (McGraw-Hill,
1985), Section 4.4. See also “Drift Speed and Collision Time,”
by Donald E. Tilley, American Journal of Physics, June 1976,
p. 597.
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means that p is independent of E), and the material obeys
Ohm’s law.

Sample Problem 5 (a) What is the mean free time 7 between
collisions for the conduction electrons in copper? (b) What is the
mean free path A for these collisions? Assume an effective speed v
of 1.6 X 10° m/s.

Solution (a) From Eq. 20 we have

m
" nelp
_ 9.11 X10™3 kg
(849 X 10%® m—3)(1.60 X 10~° C)(1.69 X 10® Q-m)
=248 X 105,

The value of n, the number of conduction electrons per unit
volume in copper, was obtained from Sample Problem 2; the
value of p comes from Table 1.

(b) We define the mean free path from

A=10=(2.48 X 107 5)(1.6 X 10¢ m/s)
=4,0X 10" m =40 nm.

This is about 150 times the distance between nearest-neighbor
ions in a copper lattice. A full treatment based on quantum
physics reveals that we cannot view a “collision” as a direct
interaction between an electron and an jon. Rather, it is an
interaction between an electron and the thermal vibrations of
the lattice, lattice imperfections, or lattice impurity atoms. An
electron can pass very freely through an “ideal” lattice, that is, a
geometrically “perfect” lattice close to the absolute zero of tem-
perature. Mean free paths as large as 10 cm have been observed
under such conditions.

32-6 ENERGY TRANSFERS IN AN
_ ELECTRIC CIRCUIT

Figure 8 shows a circuit consisting of a battery B con-
nected to a “black box.” A steady current { exists in the
connecting wires, and a steady potential difference V/,,

.
—

I:DL+
I

~.
—_— -

Figure 8 A battery B sets up a current i in a circuit contain-
ing a “black box,” that is, a box whose contents are unknown.
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exists between the terminals ¢ and b. The box might con-
tain a resistor, a motor, or a storage battery, among other
things.

Terminal a, connected to the positive battery terminal,
is at a higher potential than terminal . The potential
energy of a charge dg that moves through the box from a
to b decreases by dq V,, (see Section 30-3). The conserva-
tion-of-energy principle tells us that this energy is trans-
ferred in the box from electric energy to some other form.
What that other form will be depends on what is in the
box. In a time dt the energy dU transferred inside the box
is then

du = dq Vab= ld[ Vab-

We find the rate of energy transfer or power P according
to

P=‘fi—lt]=iVa,,. 2n
If the device in the box is a motor, the energy appears
largely as mechanical work done by the motor; if the
device is a storage battery that is being charged, the energy
appears largely as stored chemical energy in this second
battery.

If the device is a resistor, the energy appears in the
resistor as internal energy (associated with atomic motion
and observed, perhaps, as an increase in temperature). To
see this, consider a stone of mass m that falls through a
height A. It decreases its gravitational potential energy by
mgh. If the stone falls in a vacuum or—for practical
purposes—in air, this energy is transformed into kinetic
energy of the stone. If the stone falls into the depths of the
ocean, however, its speed eventually becomes constant,
which means that the kinetic energy no longer increases.
The potential energy that is steadily being made available
as the stone falls then appears as internal energy in the
stone and the surrounding water. It is the viscous, fric-
tionlike drag of the water on the surface of the stone that
stops the stone from accelerating, and it is at this surface
that the transformation to internal energy occurs.

The course of an electron through the resistor is much
like that of the stone through water. On average, the elec-
trons travel with a constant drift speed v, and thus do not
gain kinetic energy. They lose electric energy through col-
lisions with atoms of the resistor. As a result, the ampli-
tudes of the atomic vibrations increase; on a macroscopic
scale this can correspond to a temperature increase. Sub-
sequently, there can be a flow of energy out of the resistor
as heat, if the environment is at a lower temperature than
the resistor.

For a resistor we can combine Eqs. 8 (R = V/i)and 21
and obtain either

P=i’R 22)
or
V2
P=—. (23)

Note that Eq. 21 applies to electrical energy transfer of a/l
kinds; Egs. 22 and 23 apply only to the transfer of electri-
cal energy to internal energy in a resistor. Equations 22
and 23 are known as Joule’s law, and the corresponding
energy transferred to the resistor or its surroundings is
called Joule heating. This law is a particular way of writing
the conservation-of-energy principle for the special case
in which electrical energy is transferred into internal en-
ergy in a resistor.

The unit of power that follows from Eq. 21 is the
volt -ampere. We can show the volt - ampere to be equiva-
lent to the watt as a unit of power by using the definitions
of the volt (joule/coulomb) and ampere (coulomb/sec-
ond):

joule  coulomb
coulomb second

1 volt-ampere = 1

joule
second

= | watt.

We previously introduced the watt as a unit of power in
Section 7-5.

Sample Problem 6 You are given a length of heating wire
made of a nickel - chromium —iron alloy called Nichrome; it has
a resistance R of 72 Q. It is to be connected across a 120-V line.
Under which circumstances will the wire dissipate more heat:
(a) its entire length is connected across the line, or () the wire is
cut in half and the two halves are connected in parallel across the
line?

Solution (a) The power P dissipated by the entire wire is, from
Eq. 23,

(b) The power for a wire of half length (and thus half resist-
ance) is

There are two halves so that the power obtained from both of
them is 800 W, or four times that for the single wire. This would
seem to suggest that you could buy a heating wire, cut it in half,
and reconnect it to obtain four times the heat output. Why is this
not such a good idea?

32-7 SEMICONDUCTORS (Optional)

A class of materials called semiconductors is intermediate be-
tween conductors and insulators in its ability to conduct electric-
ity. Among the elements, silicon and germaniun are common
examples of room-temperature semiconductors. One important
property of semiconductors is that their ability to conduct can be
changed dramatically by external factors, such as by changes in
the temperature, applied voltage, or incident light. You can see
from Table 1 that, although pure silicon is a relatively poor
conductor, a low concentration of impurity atoms (added to



pure silicon at alevel of one impurity atom per 106 silicon atoms)
can change the conductivity by six or seven orders of magnitude.
You can also see that the conductivity of silicon is at least an
order of magnitude more sensitive to changes in temperature
than that of a typical conductor. Because of these properties,
semiconductors have found wide applications in such devices as
switchingand control circuits, and they are now essential compo-
nents of integrated circuits and computer memories.

To describe the properties of conductors, insulators, and semi-
conductors in microscopic detail requires the application of the
principles of quantum physics. However, we can gain a qualita-
tive understanding of the differences between conductors, insu-
lators, and semiconductors by referring to Fig. 9, which shows
energy states that might typically represent electrons in conduc-
tors, semiconductors, and insulators. The electrons have per-
mitted energies that are discrete or quantized (see Section 8-8),
but which group together in bands. Within the bands, the per-
mitted energy states, which are so close together that they are
virtually continuous, may be occupied (electrons having the per-
mitted energy) or unoccupied (no electrons having that energy).
Between the bands there is an energy gap, which contains no
states that an individual electron may occupy. An electron may
jump from an occupied state to any unoccupied one. At ordi-
nary temperatures, the internal energy distribution provides the
source of the energy needed for electrons to jump to higher
states.

Figure 9a illustrates the energy bands that represent a conduc-
tor. The valence band, which is the highest band occupied by
electrons, is only partially occupied, so that electrons have many
empty states to which they can easily jump. An applied electric
field can encourage electrons to make these small jumps and
contribute to a current in the material. This ease of movement of
the electrons is what makes the material a conductor.

Figure 95 shows bands that might characterize a semiconduc-
tor, such as silicon. At very low temperature, the valence band is
completely occupied, and the upper (conduction) band is com-
pletely empty. At ordinary temperatures, there is a small proba-
bility that an electron from one of the occupied states in the
lower band has enough energy to jump across the gap to one of
the empty states in the upper band. The probability for such a

Conduction
band
&
2
i AE =~ 0.7 eV
Valence = _—
band

(a) Conductor (b) Semiconductor
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jump depends on the energy distribution, which according to
Eq. 27 of Chapter 24 includes the factor ¢ /T where AE is the
energy gap. Taking AE = (.7 eV (typical for silicon) and kT =
0.025 eV at room temperature, the exponential factor is 7 X
10713, Although this is a small number, there are so many elec-
trons available in a piece of silicon (about 102 per gram) that a
reasonable number (perhaps 10!! per gram) are in the upper
band. In this band they can move easily from occupied to empty
states and contribute to the ability of a semiconductor to trans-
port electric charge. (In the process of jumping to the conduction
band, electrons leave vacancies or Aoles in the valence band.
Other electrons in the valence band can jump to those vacancies,
thereby also contributing to the conductivity.)

Another difference between conductors and semiconductors
is in their temperature coefficients of resistivity. Metals are kept
from being perfect conductors by deviations from the perfect
lattice structure, such as might be caused by the presence of
impurities or defects in the lattice. The vibration of the ion cores
about their equilibrium lattice positions is a major contributor
to the resistivity of metals. Since this effect increases with temper-
ature, the resistivity of metals increases with temperature. The
same effect of course also occurs in semiconductors, but it is
overwhelmed by a much greater effect that decreases the resistiv-
ity with increasing temperature. As the temperature increases,
more electrons acquire enough energy to be excited across the
energy gap into the conduction band, thereby increasing the
conductivity and decreasing the resistivity. As Table 1 shows,
silicon (in contrast to the metals listed) has a negative tempera-
ture coefficient of resistivity.

Figure 9¢ shows typical energy bands for an insulator, such as
sodium chloride. The band structure is very similar to that of a
semiconductor, with the valence band occupied and the con-
duction band empty. The major difference is in the size of the
energy gap, which might be typically 2 eV or more in the case of
an insulator (compared with perhaps 0.7 eV in a semiconduc-
tor). This relatively small difference makes an enormous differ-
ence in the exponential factor that gives the probability of an
electron acquiring enough energy to jump across the gap. For an
insulator at room temperature, the factor ¢~2%/%7 is typically
2 X 107%, so that in a gram of material (10?* atoms) there is a

Unoccupied
states

Gap|AE= 2 eV

Occupied
states

(c) Insulator

Figure 9 (a) Energy bands characteristic of a conductor. Below the dashed line, nearly all
energy states are occupied, while nearly all states above that line are empty. Electrons can
easily jump from occupied states to empty ones, as suggested by the arrows. (b) In a semicon-
ductor, the dividing line between filled and empty states occurs in the gap. The electrical con-
ductivity is determined in part by the number of electrons that jump to occupy states in the
conduction band. (¢) The energy bands in an insulator resemble those in a semiconductor;
the major difference is in the size of the energy gap. At ordinary temperatures, there is no
probability for an electron to jump to the empty states in the conduction band.
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negligible probability at ordinary temperatures of even one elec-
tron being in the conduction band where it could move freely. In
insulators, therefore, all electrons are confined to the valence
band, where they have no empty states to enter and thus are not
at all free to travel throughout the material.

Note that the principal difference between semiconductors
and insulators is in the relationship between the gap energy and
kT. At very low temperature, a semiconductor becomes an insu-
lator, while at a high enough temperature (which is, however,
above the point at which the material would be vaporized), an
insulator could become a semiconductor.

We consider more details of the application of quantum
theory to the structure of semiconductors in Chapter 53 of the
extended text. W

32-8 SUPERCONDUCTIVITY (Optional)

As we reduce the temperature of a conductor, the resistivity
grows smaller, as Fig. 5 suggests. What happens as we approach
the absolute zero of the temperature scale?

The part of the resistivity due to scattering of electrons by
atoms vibrating from their equilibrium lattice positions de-
creases as the temperature decreases, because the amplitude of
the vibration decreases with temperature. According to quan-
tum theory, the atoms retain a certain minimum vibrational
motion, even at the absolute zero of temperature. Furthermore,
the contributions of defects and impurities to the resistivity re-
main as 7 falls to 0. We therefore expect the resistivity to de-
crease with decreasing temperature, but to remain finite at the
lowest temperatures. Many materials do in fact show this type of
behavior.

Quite a different kind of behavior was discovered in 1911 by
the Dutch physicist Kammerlingh Onnes, who was studying the
resistivity of mercury at low temperature. He discovered that,
below a temperature of about 4 K, mercury suddenly lost all
resistivity and became a perfect conductor, called a superconduc-
tor. This was not a gradual change, as Eq. 14 and Fig. 5 suggest,
but a sudden transition, as indicated by Fig. 10. The resistivity of
a superconductor is not just very small; it is zero! If a current is
established in a superconducting material, it should persist for-
ever, even with no electric field present.

The availability of superconducting materials immediately
suggests a number of applications. (1) Energy can be transported
and stored in electrical wires without resistive losses. That is, a
power company can produce electrical energy when the demand
is light, perhaps overnight, and store the current in a supercon-

016 ! ; i
€ 0.08
[*4
0 ! | !
0 2 1 6

T (K)

Figure 10 The resistivity of mercury drops to zero at a tem-
perature of about 4 K. Mercury is a solid at this low temperature.

ducting ring. Electrical power can then be released during peak
demand times the following day. Such a ring now operates in
Tacoma, Washington, to store 5 MW of power. In smaller labo-
ratory test rings, currents have been stored for several years with
no reduction. (2) Superconducting electromagnets can produce
larger magnetic fields than conventional electromagnets. As we
discuss in Chapter 35, a current-carrying wire gives rise to a
magnetic field in the surrounding space, just as an electric charge
sets up an electric field. With superconducting wires, larger
currents and therefore larger magnetic fields can be produced.
Applications of this technology include magnetically levitated
trains and bending magnets for beams of particles in large accel-
erators such as Fermilab. (3) Superconducting components in
electronic circuits would generate no Joule heating and would
permit further miniaturization of circuits. The next generation
of mainframe computers may employ superconducting compo-
nents.

Progress in applying this exciting technology proceeded
slowly in the 75 years following Kammerlingh Onnes’ discovery
for one reason: the elements and compounds that displayed
superconductivity did so only at very low temperatures, in most
cases below 20 K. To achieve such temperatures, the supercon-
ducting material is generally immersed in a bath ofliquid helium
at 4 K. The liquid helium is costly and so, while there have been
many scientific applications of superconductivity, commercial
applications have been held back by the high cost of liquid he-
lium.

Beginning in 1986 a series of ceramic materials was discov-
ered which remained superconducting at relatively high temper-
atures. The first of these kept its superconductivity to a tempera-
ture of 90 K. While this is still a low temperature by ordinary
standards, it marks an important step: it can be maintained in a
bath of liquid nitrogen (77 K), which costs about an order of
magnitude less than liquid helium, thereby opening commercial
possibilities that had not been feasible with liquid-helium-
cooled materials.*

Superconductivity should not be regarded merely as an im-
provement in the conductivity of materials that are already good
conductors. The best room-temperature conductors (copper,
silver, and gold) do not show any superconductivity at all.

An understanding of this distinction can be found in the mi-
croscopic basis of superconductivity. Ordinary materials are
good conductors if they have free electrons that can move easily
through the lattice. Atoms of copper, silver, and gold have a
single weakly bound valence electron that can be contributed to
the electron gas that permeates the lattice. According to one
theory, superconductors depend on the motion of highly corre-
lated pairs of electrons. Since electrons generally don’t like to
form pairs, a special circumstance is required: two electrons each
interact strongly with the lattice and thus in effect with each
other. The situation is somewhat like two boats on a lake, where
the wake left by the motion of one boat causes the other to move,
even though the first boat did not exert a force directly on the
second boat. Thus a good ordinary conductor depends on hav-

* See “The New Superconductors: Prospects for Applications,”
by Alan M. Wolsky, Robert F. Giese, and Edward J. Daniels,
Scientific American, February 1989, p. 60, and “Superconduc-
tors Beyond 1-2-3,” by Robert J. Cava, Scientific American,
August 1990, p. 42.



ing electrons that interact weakly with the lattice, while a super-
conductor seems to require electrons that interact strongly with
the lattice.

709

Questions

More details about superconductors and the application of

quantum theory to understanding their properties can be found
in Chapter 53 of the extended text. B

QUESTIONS

1.

Name other physical quantities that, like current, are scalars
having a sense represented by an arrow in a diagram.

. In our convention for the direction of current arrows

(a) would it have been more convenient, or even possible, to
have assumed all charge carriers to be negative? (b) Would it
have been more convenient, or even possible, to have la-
beled the electron as positive, the proton as negative, and so
on?

. What experimental evidence can you give to show that the

electric charges in current electricity and those in electrostat-
ics are identical?

. Explain in your own words why we can have E # O inside a

conductor in this chapter, whereas we took E =0 for
granted in Section 29-4.

. A current i enters one corner of a square sheet of copper and

leaves at the opposite corner. Sketch arrows at various
points within the square to represent the relative values of
the current density j. Intuitive guesses rather than detailed
mathematical analyses are called for.

. Can you see any logic behind the assignment of gauge num-

bers to household wire? See Problem 6. If not, then why is
this system used?

. A potential difference V'is applied to a copper wire of diame-

ter d and length L. What is the effect on the electron drift
speed of (a) doubling ¥V, (b) doubling L, and (¢) doubling d?

. Why is it not possible to measure the drift speed for electrons

by timing their travel along a conductor?

. Describe briefly some possible designs of variable resistors.
10.

A potential difference V is applied to a circular cylinder of
carbon by clamping it between circular copper electrodes, as
in Fig. 11. Discuss the difficulty of calculating the resistance
of the carbon cylinder using the relation R = pL/A.

Figure 11 Question 10.

11.

You are given a cube of aluminum and access to two battery
terminals. How would you connect the terminals to the
cube to ensure (@) a maximum and (b) a minimum resist-
ance?

12. How would you measure the resistance of a pretzel-shaped

block of metal? Give specific details to clarify the concept.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.
27.

28.

Sliding across the seat of an automobile can generate poten-
tials of several thousand volts. Why isn’t the slider electro-
cuted?

Discuss the difficulties of testing whether the filament of a
light bulb obeys Ohm’s law.

Will the drift velocity of electrons in a current-carrying
metal conductor change when the temperature of the con-
ductor is increased? Explain.

Explain why the momentum that conduction electrons
transfer to the ions in a metal conductor does not give rise to
a resultant force on the conductor.

List in tabular form similarities and differences between the
flow of chdrge along a conductor, the flow of water through a
horizontal pipe, and the conduction of heat through a slab.
Consider such ideas as what causes the flow, what opposesit,
what particles (if any) participate, and the units in which the
flow may be measured.

How does the relation V' = iR apply to resistors that do not
obey Ohm’s law?

A cow and a man are standing in a meadow when lightning
strikes the ground nearby. Why is the cow more likely to be
killed than the man? The responsible phenomenon is called
“step voltage.”

The lines in Fig. 7 should be curved slightly. Why?

A fuse in an electrical circuit is a wire that is designed to
melt, and thereby open the circuit, if the current exceeds a
predetermined value. What are some characteristics of ideal
fuse wire?

Why does an incandescent light bulb grow dimmer with
use?

The character and quality of our daily lives are influenced
greatly by devices that do not obey Ohm’s law. What can
you say in support of this claim?

From a student’s paper: “The relationship R = V/i tells us
that the resistance of a conductor is directly proportional to
the potential difference applied to it.” What do you think of
this proposition?

Carbon has a negative temperature coefficient of resistivity.
This means that its resistivity drops as its temperature in-
creases. Would its resistivity disappear entirely at some high
enough temperature?

What special characteristics must heating wire have?
Equation 22 (P = i?R) seems to suggest that the rate of in-
crease of internal energy in a resistor is reduced if the resist-
ance is made less; Eq. 23 (P = V'2/R) seems to suggest just
the opposite. How do you reconcile this apparent paradox?
Why do electric power companies reduce voltage during
times of heavy demand? What is being saved?

. Is the filament resistance lower or higher in a 500-W light
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bulb than in a 100-W bulb? Both bulbs are designed to
operate at 120 V.

30. Five wires of the same length and diameter are connected in

turn between two points maintained at constant potential

31.

difference. Will internal energy be developed at a faster rate
in the wire of (@) the smallest or (b) the largest resistance?
Why is it better to send 10 MW of electric power long dis-
tances at 10 kV rather than at 220 V?

PROBLEMS

Section 32-2 Current Density

1.

A current of 4.82 A exists in a 12.4-€ resistor for 4.60 min.
(a) How much charge and (b) how many electrons pass
through any cross section of the resistor in this time?

. The current in the electron beam of a typical video display

terminal is 200 zA. How many electrons strike the screen
each minute?

. Suppose that we have 2.10 X 108 doubly charged positive

ions per cubic centimeter, all moving north with a speed of
1.40 X 10° m/s. (a) Calculate the current density, in magni-
tude and direction. (b) Can you calculate the total current in
this ion beam? If not, what additional information is
needed?

. A small but measurable current of 123 pA exists in a copper

wire whose diameter is 2.46 mm. Calculate (a) the current
density and (b) the electron drift speed. See Sample Prob-
lem 2.

. Suppose that the material composing a fuse (see Question

21) melts once the current density rises to 440 A/cm?, What
diameter of cylindrical wire should be used for the fuse to
limit the current to 0.552 A?

. The (United States) National Electric Code, which sets

maximum safe currents for rubber-insulated copper wires of
various diameters, is given (in part) below. Plot the safe
current density as a function of diameter. Which wire gauge
has the maximum safe current density?

Gauge? 4 6 8§ 10 12 14 16 18
Diameter (mils)> 204 162 129 102 81 64 51 40
Safe current(A) 70 50 35 25 20 15 6 3

4 A way of identifying the wire diameter.
51 mil =103 in.

7. A current is established in a gas discharge tube when a suffi-

ciently high potential difference is applied across the two
electrodes in the tube. The gas ionizes; electrons move
toward the positive terminal and singly charged positive
ions toward the negative terminal. What are the magnitude
and direction of the current in a hydrogen discharge tube in
which 3.1 X 10'® electrons and 1.1 X 10'® protons move
past a cross-sectional area of the tube each second?

. A pnjunction is formed from two different semiconducting

materials in the form of identical cylinders with radius 0.165
mm, as depicted in Fig. 12. In one application 3.50 X 10'5
electrons per second flow across the junction from the n to
the p side while 2.25 X 103 holes per second flow from the p
to the 7 side. (A hole acts like a particle with charge +1.6 X
10" C.) Find (a) the total current and (b) the current den-
sity.

Figure 12 Problem 8.

10.

11.

12.

13.

14.

15.

. You are given an isolated conducting sphere of 13-cm

radius. One wire carries a current of 1.0000020 A into it.
Another wire carries a current of 1.0000000 A out of it. How
long would it take for the sphere to increase in potential by
980 V?

The belt of an electrostatic accelerator is 52.0 cm wide and
travels at 28.0 m/s. The belt carries charge into the sphere at
a rate corresponding to 95.0 uA. Compute the surface
charge density on the belt. See Section 30-11.

Near the Earth, the density of protons in the solar wind is
8.70 cm™3 and their speed is 470 km/s. (@) Find the current
density of these protons. (b) If the Earth’s magnetic field did
not deflect them, the protons would strike the Earth. What
total current would the Earth receive?

In a hypothetical fusion research lab, high-temperature he-
lium gas is completely ionized, each helium atom being
separated into two free electrons and the remaining posi-
tively charged nucleus (alpha particle). An applied electric
field causes the alpha particles to drift to the east at 25 m/s
while the electrons drift to the west at 88 m/s. The alpha
particle density is 2.8 X 10'> ¢cm™3, Calculate the net current
density; specify the current direction.

How long does it take electrons to get from a car battery to
the starting motor? Assume that the currentis 115 A and the
electrons travel through copper wire with cross-sectional
area 31.2 mm? and length 85.5 cm. See Sample Problem 2.
A steady beam of alpha particles (g = 2¢) traveling with
kinetic energy 22.4 MeV carries a current of 250 nA. (@) If
the beam is directed perpendicular to a plane surface, how
many alpha particles strike the surface in 2.90 s? (b) At any
instant, how many alpha particles are there in a given
18.0-cm length of the beam? (c) Through what potential
difference was it necessary to accelerate each alpha particle
from rest to bring it to an energy of 22.4 MeV?

In the two intersecting storage rings of circumference 950 m
at CERN, protons of kinetic energy 28.0 GeV form beams of
current 30.0 A each. (a) Find the total charge carried by the
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protons in each ring. Assume that the protons travel at the
speed of light. (b) A beam is deflected out of a ring onto a
43.5-kg copper block. By how much does the temperature of
the block rise?

(a) The current density across a cylindrical conductor of
radius R varies according to the equation

J=Jjo{l = /R),

where r is the distance from the axis. Thus the current den-
sity is a maximum j, at the axis r = 0 and decreases linearly
to zero at the surface » = R. Calculate the current in terms
of j, and the conductor’s cross-sectional area 4 = nR2,
(b) Suppose that, instead, the current density is a maximum
Jo at the surface and decreases linearly to zero at the axis, so
that
J=Jor/R.

Calculate the current. Why is the result different from (a)?

Section 32-3 Resistance, Resistivity, and Conductivity

17.

18.

19.

20.

21.

22,

23.

24.

25.

A steel trolley-car rail has a cross-sectional area of 56 cm?.
What is the resistance of 11 km of rail? The resistivity of the
steel is 3.0 X 1077 Q-m.

A human being can be electrocuted if a current as small as 50
mA passes near the heart. An electrician working with
sweaty hands makes good contact with two conductors
being held one in each hand. If the electrician’s resistance is
1800 £, what might the fatal voltage be? (Electricians often
work with “live” wires.)

A wire 4.0 m long and 6.0 mm in diameter has a resistance of
15 mQ. A potential difference of 23 V is applied between the
ends. (@) What is the current in the wire? (b) Calculate the
current density. (c) Calculate the resistivity of the wire mate-
rial. Can you identify the material? See Table 1.

A fluid with resistivity 9.40 Q- m seeps into the space be-
tween the plates of a 110-pF parallel-plate air capacitor.
When the space is completely filled, what is the resistance
between the plates?

Show that if changes in the dimensions of a conductor
with changing temperature can be ignored, then the resist-
ance varies with temperature according to R— Ry=
aR(T — Ty).

From the slope of the line in Fig. 5, estimate the average
temperature coefficient of resistivity for copper at room tem-
perature and compare with the value given in Table 1.

(a) At what temperature would the resistance of a copper
conductor be double its resistance at 20°C? (Use 20°C as
the reference point in Eq. 14; compare your answer with Fig.
5.) (b) Does this same temperature hold for all copper con-
ductors, regardless of shape or size?

The copper windings of a motor have a resistance of 50 Q at
20°C when the motor isidle. After running for several hours
the resistance rises to 58 Q. What is the temperature of the
windings? Ignore changes in the dimensions of the windings.
See Table 1.

A 4.0-cm-long caterpillar crawls in the direction of electron
drift along a 5.2-mm-diameter bare copper wire that carries
a current of 12 A. (a) Find the potential difference between
the two ends of the caterpillar. (b) Is its tail positive or nega-

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.
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tive compared to its head? (¢) How much time could it take
the caterpillar to crawl 1.0 cm and still keep up with the
drifting electrons in the wire?

A coil is formed by winding 250 turns of insulated gauge 8
copper wire (see Problem 6) in a single layer on a cylindrical
form whose radiusis 12.2 cm. Find the resistance of the coil.
Neglect the thickness of the insulation. See Table 1.

A wire with a resistance of 6.0 Q is drawn out through a die
so that its new length is three times its original length. Find
the resistance of the longer wire, assuming that the resistivity
and density of the material are not changed during the
drawing process.

What must be the diameter of an iron wire if it is to have the
same resistance as a copper wire 1.19 mm in diameter, both
wires being the same length?

Two conductors are made of the same material and have the
same length. Conductor A is a solid wire of diameter D.
Conductor B is a hollow tube of outside diameter 2D and
inside diameter D. Find the resistance ratio, R,/Rp, mea-
sured between their ends.

A copper wire and an iron wire of the same length have the
same potential difference applied to them. (a) What must be
the ratio of their radii if the current is to be the same? (b) Can
the current density be made the same by suitable choices of
the radii?

An electrical cable consists of 125 strands of fine wire, each
having 2.65-u£ resistance. The same potential difference is
applied between the ends of each strand and results in a total
current of 750 mA. (a) What is the current in each strand?
(b) What is the applied potential difference? (¢) What is the
resistance of the cable?

A common flashlight bulb is rated at 310 mA and 2.90 V,
the values of the current and voltage under operating condi-
tions. If the resistance of the bulb filament when cold (7, =
20°C) is 1.12 Q, calculate the temperature of the filament
when the bulb is on. The filament is made of tungsten.
Assume that Eq. 14 holds over the temperature range en-
countered.

When 115 V is applied across a 9.66-m-long wire, the
current density is 1.42 A/cm?. Calculate the conductivity of
the wire material.

A block in the shape of a rectangular solid has a cross-sec-
tional area of 3.50 cm?, a length of 15.8 ¢cm, and a resistance
of 935 Q. The material of which the block is made has
5.33 X 10?? conduction electrons/m3. A potential differ-
ence of 35.8 V is maintained between its ends. (a) Find the
current in the block. (b) Assuming that the current density is
uniform, what is its value? Calculate (c) the drift velocity of
the conduction electrons and (d) the electric field in the
block.

Copper and aluminum are being considered for a high-vol-
tage transmission line that must carry a current of 62.3 A.
The resistance per unit length is to be 0.152 Q/km. Com-
pute for each choice of cable material (a) the current density
and (b) the mass of 1.00 m of the cable. The densities of
copper and aluminum are 8960 and 2700 kg/m3, respec-
tively.

In the lower atmosphere of the Earth there are negative and
positive ions, created by radioactive elements in the soil and
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Figure 13 Problem 36.

37.

38.

39.

40.

cosmic rays from space. In a certain region, the atmospheric
electric field strength is 120 V/m, directed vertically down.
Due to this field, singly charged positive ions, 620 per cm?,
drift downward, and singly charged negative ions, 550 per
cm?, drift upward; see Fig. 13. The measured conductivity is
2.70 X 1074/Q-m. Calculate (a) the ion drift speed, as-
sumed the same for positive and negative ions, and () the
current density.

A rod of a certain metal is 1.6 m long and 5.5 mm in diame-
ter. The resistance between its ends (at 20°C)is 1.09 X 1073 Q.
A round disk is formed of this same material, 2.14 cm in
diameter and 1.35 mm thick. (¢) What is the material?
(b) What is the resistance between the opposing round faces,
assuming equipotential sufaces?

When a metal rod is heated, not only its resistance but also
its length and its cross-sectional area change. The relation
R = pL/A suggests that all three factors should be taken into
account in measuring p at various temperatures. (a) If the
temperature changes by 1.0 C°, what fractional changes in
R, L, and A occur for a copper conductor? (b) What conclu-
sion do you draw? The coeflicient of linear expansion is
1.7 X 1073/C".

It is desired to make a long cylindrical conductor whose
temperature coefficient of resistivity at 20°C will be close to
zero. If such a conductor is made by assembling alternate
disks of iron and carbon, find the ratio of the thickness of a
carbon disk to that of an iron disk. (For carbon, p = 3500 X
108 Q-mand a = —0.50 X 1073/C°))

A resistor is in the shape of a truncated right circular cone
(Fig. 14). The end radii are a and b, and the altitude is L. If
the taper is small, we may assume that the current density is
uniform across any cross section. (@) Calculate the resist-
ance of this object. (b) Show that your answer reduces to
pL/A for the special case of zero taper (a = b).

Section 32-4 Ohm’s Law

41.

42.

For a hypothetical electronic device, the potential difference
V in volts, measured across the device, is related to the
current { in mA by ¥V = 3.55 j2. (a) Find the resistance when
the currentis 2.40 mA. (b) At what value of the currentis the
resistance equal to 16.0 Q7

Using data from Fig. 6, plot the resistance of the pn junc-
tion diode as a function of applied potential difference.

Figure 14 Problem 40.

Section 32-5 Ohm’s Law: A Microscopic View

43.

44.

Calculate the mean free time between collisions for conduc-
tion electrons in aluminum at 20°C. Each atom of alumi-
num contributes three conduction electrons. Take needed
data from Table 1 and Appendix D. See also Sample Prob-
lem 2.

Show that, according to the free-electron model of electrical
conduction in metals and classical physics, the resistivity of
metals should be proportional to VT, where T is absolute
temperature. (Hint: Treat the electrons as an ideal gas.)

Section 32-6 Energy Transfers in an Electric Circuit

45,

46.

47.

48.

49,

50.

A student’s 9.0-V, 7.5-W portable radio was left on from
9:00 p.m. until 3:00 a.m. How much charge passed through
the wires?

The headlights of a moving car draw 9.7 A from the 12-V
alternator, which is driven by the engine. Assume the alter-
nator is 82% efficient and calculate the horsepower the en-
gine must supply to run the lights.

A space heater, operating from a 120-V line, has a hot resist-
ance of 14.0 Q. (a) At what rate is electrical energy trans-
fered into internal energy? (b) At 5.22¢/kW - h, what does it
cost to operate the device for 6 h 25 min?

The National Board of Fire Underwriters has fixed safe
current-carrying capacities for various sizes and types of
wire. For #10 rubber-coated copper wire (diameter = 0.10
in.) the maximum safe current is 25 A. At this current, find
(a) the current density, (b) the electric field, (c) the potential
difference for 1000 ft of wire, and (d) the rate at which
internal energy is developed for 1000 ft of wire.

A 100-W light bulb is plugged into a standard 120-V outlet.
(a) How much does it cost per month (31 days) to leave the
light turned on? Assume electric energy cost 6¢/kW-h.
(b) What is the resistance of the bulb? (¢) What is the current
in the bulb? (d) Is the resistance different when the bulb is
turned off?

A Nichrome heater dissipates 500 W when the applied po-
tential difference is 110 V and the wire temperature is
800°C. How much power would it dissipate if the wire tem-
perature were held at 200°C by immersion in a bath of



51.

52.

53.

54.

55.

56.

cooling 0il? The applied potential difference remains the
same; a for Nichrome at 800°C is 4.0 X 1074/C°.

An electron linear accelerator produces a pulsed beam of
electrons. The pulse current is 485 mA and the pulse dura-
tion is 95.0 ns. (a) How many electrons are accelerated per
pulse? (b) Find the average current for a machine operating
at 520 pulses/s. (c) If the electrons are accelerated to an
energy of 47.7 MeV, what are the values of average and peak
power outputs of the accelerator?

A cylindrical resistor of radius 5.12 mm and length 1.96 cm
is made of material that has a resistivity of 3.50 X 10~*
Q- m. What are (a) the current density and (b) the potential
difference when the power dissipation is 1.55 W?

A heating element is made by maintaining a potential dif-
ference of 75 V along the length of a Nichrome wire with a
2.6 mm? cross section and a resistivity of 5.0 X 1077 Q- m.
(a) If the element dissipates 4.8 kW, what is its length?
(b) If a potential difference of 110 V is used to obtain the
same power output, what should the length be?

A coil of current-carrying Nichrome wire is immersed in a
liquid contained in a calorimeter. When the potential differ-
ence across the coil is 12 V and the current through the coil is
5.2 A, the liquid boils at a steady rate, evaporating at the rate
of 21 mg/s. Calculate the heat of vaporization of the liquid.

A resistance coil, wired to an external battery, is placed
inside an adiabatic cylinder fitted with a frictionless piston
and containing an ideal gas. A current i = 240 mA flows
through the coil, which has a resistance R = 550 Q. At what
speed v must the piston, mass m = 11.8 kg, move upward in
order that the temperature of the gas remains unchanged?
See Fig. 15.

An electric immersion heater normally takes 93.5 min to
bring cold water in a well-insulated container to a certain
temperature, after which a thermostat switches the heater
off. One day the line voltage is reduced by 6.20% because of
a laboratory overload. How long will it now take to heat the
water? Assume that the resistance of the heating element is
the same for each of these two modes of operation.
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Figure 15

57.

58.

59.

60.

61.

Problem 55.

Two isolated conducting spheres, each of radius 14.0 cm,
are charged to potentials of 240 and 440 V and are then
connected by a fine wire. Calculate the internal energy devel-
oped in the wire.

The current carried by the electron beam in a particular
cathode ray tube is 4.14 mA. The speed of the electrons is
2.82 X 107 m/s and the beam travels a distance of 31.5 cmin
reaching the screen. (@) How many electrons are in the beam
at any instant? (b) Find the power dissipated at the screen.
(Ignore relativistic effects.)

A 420-W immersion heater is placed in a pot containing
2.10 liters of water at 18.5°C. (@) How long will it take to
bring the water to boiling temperature, assuming that 77.0%
of the available energy is absorbed by the water? (b) How
much longer will it take to boil half the water away?

A 32-uF capacitor is connected across a programmed power
supply. During the interval from ¢ = 0 to ¢ = 3 s the output
voltage of the supply is given by V() = 6 + 4t — 212 volts.
At t=0.50 s find (a) the charge on the capacitor, (b) the
current into the capacitor, and (¢) the power output from the
power supply.

A potential difference V is applied to a wire of cross-sec-
tional area A, length L, and conductivity 0. You want to
change the applied potential difference and draw out the
wire so the power dissipated is increased by a factor of 30
and the current is increased by a factor of 4. What should be
the new values of the (a) length and (b) cross-sectional area?



