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TABLE 6.2
Number of counts detected in 7V2-min intervals as a function of distance from
the source

Weight Fitted

Distance x; =1/d? Counts a/ch counts

) d,‘ (m) (.."!_2\ C,' T w; w; X; w, L ‘.‘.’i.‘:% wix,-C,' a+ b.‘:,-
| 0.20 25.00 901 30.0 0.00111 0.0278 1 0694 250 887
2 0.25 16.00 652 25.5 0.00153 0.0254 1 0393 160 610
3 0.30 11.11 443 21.0 0.00226 0.0251 1 0279 11.1 461
4 0.35 8.16 339 18.4 0.00295 0.0241 1 0.197 82 370
5 0.40 6.25 283 16.8 0.00353 0.0221 1 0.138 6.3 311
6 0.45 4.94 281 16.8 0.00356 0.0176 1 0.087 49 271
7 0.50 4.00 240 15.5 0.00417 0.0167 I 0.067 4.0 242
8 0.60 2.78 220 14.8 0.00455 0.0126 1 0.035 2.8 205
9 0.75 1.78 180 13.4 0.00556 0.0099 1 0.018 1.8 174
10 1.00 1.00 154 12.4 0.00649 0.0065 1 0.007 1.0 150

Sums 0.03570 0.1868 10 1912 81.0

o, = \Vy w, = llo?= 1y,

A 2w, Zw;x?— (Sw; x; )2 = 0.03570 X 1.912 — (0.1868)% = 0.0334
a—[ZWCwa = 2wix; Zw;x, C;J/A = [10 X 1.912 — 0.1868 X 81.0]/A = 119.5
b= [2Zw;Zw,x; C, — Zw,x; Zw; C;J/A = [0.03570 X 81.0 — 0.1868 X 10]/A = 30.7
o2=3w,x2/A =1912/0.0334 = 57.3 o,=76

a

o3 = Zw;/A = 0.03570/0.0334 = 1.07 o, = 1.1

Note: A linear fit to the data of the function C = a + bx by the method of determinants gives a = 119 * 8 and
b =31 % 1, with x2 = 11.1 for 8 degrees of freedom. The x? probability for the fit is about 20%.

We cannot fit a straight line to the data exactly in either example because it is
impossible to draw a straight line through all the points. For a set of N arbitrary
points, it is always possible to fit a polynomial of degree N — 1 exactly, but for our
experiments, the coefficients of the higher-order terms would have questionable sig-
nificance. We assume that the fluctuations of the individual points above and below
the solid curves are caused by experimental uncertainties in the md1v1dual mea-

surements. In Chapter 11 we shall develop a meth

order terms are significant.

Measuring Uncertainties

If we were to make a series of measurements of the dependent quantity y; for one
particular value x; of the independent quantity, we would find that the measured
values were distributed about a mean in the manner discussed in Chapter 5 with a
probability of ~68% that any single measurement of y; be within 1 standard devia-
tion of the mean. By making a number of measurements for each value of the in-
dependent quantity x;, we could determine mean values y; with any desired
precision. Usually, however, we can make only one measurement y; for each value
of x = x;, so that we must determine the value of y corresponding to that value of x
with an uncertainty that is characterized by the standard deviation o; of the distri-
bution of data for that point.
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We shall assume for simplicity in all the following discussions that we can as-
cribe all the uncertainty in each measurement to the dependent variable. This is
equivalent to assuming that the precision of the determination of x is considerably
higher than that of y. This difference is illustrated in Figures 6.1 and 6.2 by the fact
that the uncertainties are indicated by error bars for the dependent variables but not
for the independent variables.

Our condition, that we neglect uncertainties in x and consider just the uncer-
tainties in y, will be valid only if the uncertainties in y that would be produced by
variations in x corresponding to the uncertainties in the measurement of x are much
smaller than the uncertainties in the measurement of y. This is equivalent, in first or-
der, to the requirement at each measured point that

< o,
Tx
where dy/dx is the slope of the function y = y(x).
We are not always justified in ascribing all uncertainties to the dependent pa-
rameter. Sometimes the uncertainties in the determination of both quantities x and y
are nearly equal. But our fitting procedure will still be fairly accurate if we estimate

the indirect contribution o, from the uncertainty o, in x to the total uncertainty in y
by the first-order relation

)
Oy O'Xa (6.2)
S bl A.L PR PO LU R 4 N LA, ~ el S R
and combine this with the direct contribution o5, which is the measuring uncer-

tainty in y, to get
o2=0j+toh (6.3)

For both Examples 6.1 and 6.2 the condition would be reasonable because we pre-
dict a linear dependence of y with x. With the linear assumption, we treat the uncer-
tainties in our data as if they were in the dependent variable only, while realizing
that the corresponding fluctuations may have been originally derived from uncer-
tainties in the determinations of both dependent and independent variables.

In those cases where the uncertainties in the determination of the independent
quantity are considerably greater than those in the dependent quantity, it might be
wise to interchange the definition of the two quantities.

6.2 METHOD OF LEAST SQUARES

Our data consist of pairs of measurements (x;, y;) of an independent variable x and a
dependent variable y. We wish to find values of the parameters a and b that mini-
mize the discrepancy between the measured values y; and calculated values y(x). We
cannot determine the parameters exactly with only a finite number of observations,
but can hope to extract the most probable estimates for the coefficients in the same
way that we extracted the most probable estimate of the mean in Chapter 4.

Raf, a aadin a m t Adafina Anr oritar fn o tha A;
oli0rC proceiaing, wo must GeIine our Oritlria ior mlﬂlm121n5 i GisCrep-

ancy between the measured and predicted values y;. For any arbitrary values of a
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and b, we can calculate the deviations Ay; between each of the observed values y;
and the corresponding calculated or fitted values

Ay, =y, —y(x)=y,—a— bx, (6.4)

With well chosen parameters, these deviations should be relatively small. However,
the sum of these deviations is not a good measure of how well our calculated
straight line approximates the data because large positive deviations can be bal-
anced by negative ones to yield a small sum even when the fit of the function y(x)
to the data is bad. We might consider instead summing the absolute values of the de-
viations, but this leads to difficulties in obtaining an analytical solution. Instead we
sum the squares of the deviations.

There in no correct unique method for optimizing the parameters valid for all
problems. There exists, however, a method that can be fairly well justified, that is
simple and straightforward, and that is well established experimentally. This is the
method of least squares, similar to the method discussed in Chapter 4, but extended
to include more than one variable. It may be considered as a special case of the
more general method of maximum likelihood.

Method of Maximum Likelihood

Our data consist of a sample of observations drawn from a parent distribution that
determines the probability of making any particular observation. For the particular
problem of an expected linear relationship between dependent and independent
variables, we define parent parameters a, and b, such that the actual relationship be-

frxrannm

and v ic aivan ki
twilll y aliud A 1D gl yuill U)’
yo(x) = ag + byx (6.5)

We shall assume that each individual measured value of y; is itself drawn from a
Gaussian distribution with mean y,(x;) and standard deviation ;. We should be
aware that the Gaussian assumption may not always be exactly true. In Example 6.2
the y;, = C,; were obtained in a counting experiment and therefore follow a Poisson
distribution. However, for a sufficiently large number of counts y; the distribution
may be considered to be Gaussian. We shall discuss fitting with Poisson statistics in
Section 6.6.

With the Gaussian assumption, the probability P; for making the observed
measurement y; with standard deviation o; for the observations about the actual
value yy(x,) is

_ 1 Ny~ )’O(Xi)T]
P, = 0,-\/% exp { 2[ o, (6.6)

The probability for making the observed set of measurements of the N values of y;
is the product of the probabilities for each observation:

P(ay, by) =T1P, =[] <0‘\1/27’n') exp [_% > [)’i__(%)(_xﬁﬂ (6.7)

i



104 Data Reduction and Error Analysis for the Physical Sciences

where the product II is taken with i ranging from 1 to N and the product of the ex-
ponentials has been expressed as the exponential of the sum of the arguments. In
these products and sums, the quantities 1/a7 act as weighting factors.

Similarly, for any estimated values of the parameters a and b, we can calculate
the probability of obtaining the observed set of measurements

Pla,b)= Tr( — | exp I—lv[ -—y(xi)]zl (6.8)
\oven) S L 250 o )

with y(x) defined by Equation (6.1) and evaluated at each of the values x;.

We assume that the observed set of measurements is more likely to have come
from the parent distribution of Equation (6.5) than from any other similar distribu-
tion with different coefficients and, therefore, the probability of Equation (6.7) is
the maximum pluuauuu_y attainable with Equatien \U 0) 1hua, the maximum-
likelihood estimates for a and b are those values that maximize the probability of
Equation (6.8).

Because the first factor in the product of Equation (6.8) is a constant, inde-
pendent of the values of a and b, maximizing the probability P(a, b) is equivalent to
minimizing the sum in the exponential. We define this sum to be our goodness-of-

fit parameter x%:

— 2 2
Xt = 2 {m] = 2['!‘ ()’i —a-— bxi)] (6.9)
0; 0;
We use the same symbol x?, defined earlier in Equation (4.32), because this is es-
sentially the same definition in a different context.

Our method for finding the optimum fit to the data will be to find values of a
and b that minimize this weighted sum of the squares of the deviations x> and
hence, to find the fit that produces the smallest sum of the squares or the least-
squares fit. The magnitude of x? is determined by four factors:

1. Fluctuations in the measured values of the variables y;, which are random sam-
ples from a parent population with expectation values y,(x;).

2. The values assigned to the uncertainties o; in the measured variables y,. Incor-
rect assignment of the uncertainties o; will lead to incorrect values of x?.

A calant: ~a A e Tem g~ o AQ v Ormamsenwriian b2 onea b sl

3. 1 llC bClCLLlUll Ul LllC d.lld.lyllbd.l lullLLlUll y\.L} dd all delUAlllld.LlUll LU IC t-l“lie
function yy(x). It might be necessary to fit several different functions in order to
find the appropriate function for a particular set of data.

4. The values of the parameters of the function y(x). Our objective is to find the
“best values” of these parameters.

6.3 MINIMIZING x>

To find the values of the parameters a and b that yield the minimum value for x2, we
set to zero the partial derivatives of x? with respect to each of the parameters
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2e=25lL0ma-ny]
=23y —a—bx)| =0
R . (6.10)
%v=%zﬁgwm—mﬂ
=-23 Gliz(yi—a—bxi)}=0

These equations can be rearranged as a pair of linear simultaneous equations
in the unknown parameters a and b:

Yi 1 Xi

2 5=ay Stbhy
i i i (6.11)
XiYi Xi X7

2 TR

The solutions can be found in any one of a number of different ways, but, for
generality we shall use the method of determinants. (See Appendix B.) The solu-

inng ara
v al v

i Xi
_ 20_'2 20:'2 _ 1 x; Yi Xi < XiYi
A < Yidi vx_iz_A(EUizEUiz 20,-220,-2
1 012 0','2 1 1 Xy X; Vi
=Rl xy, =z(2;2g—2;2—;) (6.12)
Mgl gl A\TeiZol Soisdl,
0',~ 0"-
2 2 2 \2
A=21 E§=E;E%—@%)
4 2o

For the special case in which all the uncertainties are equal (o = o), they can-
cel and the solutions may be written

_ L2y, 2x|_ 1 .
a= A’ |Zxy; Zx? A (ExiEy,- Ex.Zxy)
_ 1IN 2y | _ 1 3
TA Sk Sxyl T A NExy — ZxZy,) (6.13)
Al = N 2x|_ NEx2 - (Sx,)?

Exi E)C%
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Examples

For the data of Example 6.1 (Table 6.1), we assume that the uncertainties in the
measured voltages V are all equal and that the uncertainties in x; are negligible. We
can therefore use Equation (6.13). We accumulate four sums Zx;, 2y, = 2V, Zx?,
and Zx;y; = 2x;V; and combine them according to Equation (6.13) to find numeri-
cal values for a and b. The steps of the calculation are illustrated in Table 6.1, and

the resulting fit is shown as a solid line on Figure 6.1.

Determination of the parameters a and b from Equation (6.12) is somewhat
more tedious, because the uncertainties g; must be included. Table 6.2 shows steps
in the calculation of the data of Example 6.2 with the uncertainties ¢; in the num-
bers of counts C; determined by Poisson statistics so that 7 = C;. The values of a
and b found in this calculation were used to calculate the straight line through the

dqto pgunts }n Fﬂgnrn ﬁ ’)

It is important to note that the value of C; to be used in determining the un-
certainty o; must be the actual number of events observed. If, for example, the
student had decided to improve her statistics by collecting data at the larger dis-
tances over longer time periods At; and to normalize all her data to a common
time interval Atr,,

C!=C; X At,/At,

then the statistical uncertainty in C’ would be given by

o/ = V/C, X At /At,

Program 6.1. FITLINE (Appendix E) Solution of Equations (6.11) by the deter-
minant method of Equation (6.12).

The program uses routines in the programs units FITVARS, FITUTIL, and
GENUTIL, which are also used by other fitting programs. The sample programs
use single precision variables for simplicity, although double, or higher, precision is
highly recommended.

Program 6.1 uses Equation (6.12) to solve both Examples 6.1 and 6.2, al-
though separate routines written for each problem would be slightly more efficient.
Because the measurements of Example 6.1 have common errors, we could, for ex-
ample, increase the fitting speed by using Equations (6.13) rather than Equations
(6.12). Similarly, for Example 6.2, we could simplify the fitting routine by replac-
ing the statistical errors SIGY[1] by the explicit expression for \/y;. However, in
most calculations that involve statistical errors, there are also other errors to be con-
sidered, such as those arising from background subtractions, so the loss of general-
ity would more than compensate for any increased efficiency in the calculations.

Program 6.2. FIiTVARS (website) Inciude file of constants, variabies, and arrays
for least-squares fits.

Program 6.3. FITUTIL (website) Utility routines for fitting programs
Input/output routine, x? calculation, x>-density, and x>-integral probability.
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Program 6.4. GENUTIL (website) General Utility Routines
Includes approximate gamma function, Simpson’s rule integration.

6.4 ERROR ESTIMATION

Common Uncertainties

If the standard deviations o; for the data points y; are unknown but we can assume
that they are all equal, o? = o2, then we can estimate them from the data and the re-
sults of our fit. The requirement of equal errors may be satisfied if the uncertainties
are instrumental and all the data are recorded with the same instrument and on the
same scale, as was assumed in Example 6.1.

In Chapter 2 we obtained, for our best estimate of the variance of the data
sample,

o2 =st= 3 (- ) 6.14)
N—m ! '

where N — m is the number of degrees of freedom and is equal to the number of
measurements minus the number of parameters determined from the fit. In Equation
(6.14) we identify y; with the measured value of the dependent variable, and for y,
the expected mean value of y;, we use the value calculated from Equation (6.1) for
each data point with the fitted parameters a and b. Thus, our estimate o; = o for the
standard deviation of an individual measurement is

1

20 2=
N-=2

ol=g (y,—a—bx;)? (6.15)
By comparing Equation (6.15) with Equation (6.9), we see that it is just this com-
mon uncertainty that we have minimized in the least-squares fitting procedure.
Thus, we can obtain the common error in our measurements of y from the fit, al-
though at the expense of any information about the quality of the fit.

Variable Uncertainties

In general the uncertainties o; in the dependent variables y; will not all be the same.
If, for example, the quantity y represents the number of counts in a detector per unit
time interval (as in Example 6.2), then the errors are statistical and the uncertainty
in each measurement y; is directly related to the magnitude of y (as discussed in Sec-
tion 4.2), and the standard deviations o; associated with these measurements is

In principle, the value of y,, which should be used in calculating the standard
deviations o; by Equation (6.16), is the value y,(x;) of the parent population. In prac-
tice we use the measured values that are only samples from that population. In the
limit of an infinite number of determinations, the average of all the measurements
would very closely approximate the parent value, but generally we cannot make
more than one measurement of each value of x, much less an infinite number. We
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could approximate the parent value yy(x;) by using the calculated value y(x) from
our fit, but that would complicate the fitting procedure. We shall discuss this possi-
bility further in the following section.

Contributions from instrumental and other uncertainties may modify the sim-
ple square root form of the statistical errors. For example, uncertainties in measur-
ing the time interval during which the events of Example 6.2 were recorded might
contribute, although statistical fluctuations generally dominate in counting experi-
ments. Background subtractions are another source of uncertainty. In many count-
ing experiments, there is a background under the data that may be removed by
subtraction, or may be included in the fit. In Example 6.2, cosmic rays and other
backgrounds contribute to a counting rate even when the source is moved far away
from the detector, as indicated by the nonzero intercept of the fitted line of Figure
6.2 on the C axis. If the student had chosen to record the radiation background
counts C, in a separate measurement and to subtract C, from each of her measure-
ments C; to obtain

C=¢-¢6

then the uncertainty in C’ would have been given by combining in quadrature the
uncertainties in the two measurements:

o =0t +a}

x> Probability

For those data for which we know the uncertainties g; in the measured values y; we
can calculate the value of x? from Equation (6.9) and test the goodness of our fit.
For our two-parameter fit to a straight line, the number of degrees of freedom will
be N — 2. Then, for the data of Example 6.2, we should hope to obtain x? = 10 — 2
= 8. The actual value, x> = 11.1, is listed in Table 6.2, along with the probability
(p = 20%). (See Table C.4.) We interpret this probability in the following way.
Suppose that we have obtained a x? probability of p% for a certain set of data. Then,
we should expect that, if we were to repeat the experiment many times, approxi-
mately p% of the experiments would yield x? values as high as the one that we ob-
tained or higher. This subject will be discussed further in Chapter 11.

In Example 6.1, we obtained a value of x> = 1.95 for 7 degrees of freedom,
corresponding to a probability of about 96%. Although this probability may seem to
be gratifyingly high, the very low value of x? gives a strong indication that the com-
mon uncertainty in the data may have been overestimated and it might be wise to
use the value of x? to obtain a better estimate of the common uncertainty. From
Equations (6.15) and (6.9), we obtain an expression for the revised common uncer-
tainty o in terms of x? and the original estimate, o

a'2=g?X y¥(N—-2) (6.17)
or, more generally
g?=ag? X x2 (6.18)

where x2 = x?/v and v is the number of degrees of freedom in the fit. Thus, for Ex-
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Uncertainties in the Parameters

In order to find the uncertainty in the estimation of the parameters a and b in our fit-
ting procedure, we use the error propagation method discussed in Chapter 3. Each
of our data points y; has been used in the determination of the parameters and each
has contributed some fraction of its own uncertainty to the uncertainty in our final
determination. Ignoring systematic errors, which would introduce correlations be-
tween uncertainties, the variance o2 of the parameter z is given by Equation (3.14)
as the sum of the squares of the products of the standard deviations o; of the data
points with the effects that the data points have on the determination of z:

Tl fAzerndm bt b
1

partial derivatives of Equatlon (6 12):

da 11 X XX
9y, A(sz 2 o} of 2 0?)

ab 1 X;
Pl 22—‘— -
Y gj i Oi

.l

(6.20)

We note that the derivatives are functions only of the variances and of the indepen-
dent variables x;. Combining these equations with the general expression of Equa-
tion (6.19) and squaring, we obtain for o2,

2 G _,\, ""”j X; sz / X: \2-|

g L ! _’+_ —t

“ ;=1A kz ) (;IZ 0}‘(20?)J
1

:E{zg(gg—f)—zzgf;zj—izfﬁﬁzi—?(zx‘%)z}

o1 \& o7 o?
“#(Ed)zh2-E3)]
=12§ 6.21)
and for o3,
sl E)- g 5]

2

Bl— TM=

Q

j=1
1
2

:
si(pi)-mislntes(s2)]
(2”.)[2%;2%;-(2591

1

S = (6.22)

g;

Bl— b
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For the special case of common uncertainties in y;, 0; = o, these equations
reduce to

2 2
o o
—3x? and o;=N

o=

Al

~
o)
S
w
p—

with o given by Equation (6.15) and A’ given by Equation (6.13).

The uncertainties in the parameters o, and g, calculated from the original er-
ror estimates, are listed in Tables 6.1 and 6.2. For Example 6.1, revised uncertain-
ties o, and o;, based on the revised common data uncertainty calculated from
Equation (6.18), are also listed.

6.5 SOME LIMITATIONS OF THE
LEAST-SQUARES METHOD

When a curve is fitted by the least-squares method to a collection of statistical
counting data, the data must first be histogrammed; that is, a histogram must be
formed of the corrected data, either during or after data collection. In Example 6.2,
the data were collected over intervals of time At, with the size of the interval cho-
sen to assure that a reasonable number of counts would be collected in each time in-

terval. For data that vary linearly with the independent variable, this treatment poses
no special problems, but one could imagine a more onmnlex problem in which fine

2V SpvvaGe A VL VUL LA i CGEs 133 L0 Qi VS8 Y | vililv

details of the variation of the dependent variable y with the 1ndependent variable x
are important. Such details might well be lost if the binning were too coarse. On the
other hand, if the binning interval were too fine, there might not be enough counts
in each bin to justify the Gaussian probability hypothesis. How does one choose the
appropriate bin size for the data?

A handy rule of thumb when considering the Poisson distribution is to assume
that large enough = 10. A comparison of the Gaussian and Poisson distributions for
mean p. = 10 and standard deviation o = \/}I (see Figures 2.4 and 2.5) shows very
little difference between the two distributions. We might expect this because the
mean is more than 3 standard deviations away from the origin. Thus, we may be
reasonably confident about the results of a fit if no histogram contains less than ten
counts and if we are not nlacl_no excessive reliance on the actual value of v ob-
tained from the fit. If a bin does have fewer than the allowed minimum number of
counts, it may be possible to merge that bin with an adjacent one. Note that there is
no requirement that intervals on the abscissa be equal, although we must be careful
in our choice of the appropriate value of x; for the merged bin. We should also be
aware that such mergers necessarily reduce the resolution of our data and may,
when fitting functions more complicated than a straight line, obscure some interest-
ing features.

In general, the choice of bin width will be a compromise between the need for
sufficient statistics to maintain a small relative error in the values of y; and thus in
the fitted parameters, and the need to preserve interesting structure in the data.
When full details of any structure in the data must be preserved, it might be advis-
able to apply the maximum-likelihood method directly to the data, event by event,
rather than to use the least-squares method with its necessary binning of the data.
We return to this subject in Chapter 10.
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There is also a question about our use of the experimental errors in the fitting
process, rather than the errors predicted by our estimate of the parent distribution.
For Example 6.2, this corresponds to our choosing a? = y, rather than ¢? = y(x;) =
a + bx;. We shall consider the possibility of using errors from our estimate of the
parent distribution, as well as the direct application of the Poisson probability func-
tion, in the following section.

Another important point to consider when fitting curves to data is the possi-
bility of rounding errors, which can reduce the accuracy of the results. With manual
calculations, it is important to avoid rounding the numbers until the very end of the
calculation. With computers, problems may arise because of finite computer word
length. This problem can be especially severe with matrix and determinant calcula-
tions, which often involve taking small differences between large numbers.
Depending on the computer and the software, it may be necessary to use double-
precision variables in the fitting routine.

We discuss in Chapter 7 the interaction of parameters in a multiparameter fit.
For now, it is worth noting that, for a nominally “flat” distribution of data, the in-
tercept obtained from a fit to a straight line may not be identical to the mean value
of the data points on the ordinate. See Exercise 6.7 for an example of this effect.

6.6 ALTERNATE FITTING METHODS

In this section we attempt to solve the problem of fitting a straight line to a collec-
tion of data points by using errors determined from the estimated parent distribution
rather than from the measurements, and by directly applying Poisson statistics,
rather than Gaussian statistics. Because it is not possible to derive a set of indepen-

Adant linaar annatinng far tha naramatare with thaca randitinne avnlicit avnraccinne
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for the parameters a and b cannot be obtained. However, with fast computers, solv-
ing coupled, nonlinear equations is not difficult, although the clarity and elegance
of the straightforward least-squares method can be lost.

Poisson Uncertainties

Let us consider a collection of purely statistical data that obey Poisson statistics (as

in Exvamnla 6 2\ ¢n that tha nnecartaintiac can ha avnraccad hv Fanatian (6 16) Wp
11 ‘..Jl\ullli.’l\/ e H} IV L11IALl Uluv Uliviuwil Lldallilivo vall U \ll\yl\;\)o\au UJ \.juull\}ll \V ‘Ul

begin by substituting the approximation o? = y(x;) = a + bx; into the definition of
x? in Equation (6.9), which is based on Gaussian probability, and minimizing the
value of x? as in Equations (6.10). The result is a pair of simultaneous equations that
can be solved for a and b:

N= §:(a + bx )2
(6.24)

Xi y,
=2t o) (a + bx,)?
Poisson Probability

Next, let us replace the Gaussian probability P(a, b) of Equation (6.8) by the corre-
sponding probability for observing y; counts from a Poisson distribution with mean

B = y(x),
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) (6.25)

and apply the method of maximum likelihood to this probability. It is easier and
equivalent to maximize the natural logarithm of the probability with respect to each
of the parameters a and b:

InPlg, b)=3

1 Pla (v)] — S v(x.) + constant (6.26)
() i/l BACTVALER &t VLU
where the constant term is independent of the parameters a and b. The result of tak-
ing partial derivatives of Equation (6.26) is a pair of simultaneous equations similar

to those of Equation (6.24),

Yi
N = —
E a+ bx; (6.27)
_ X;Yi
EXi N 20 + bxi

but with less emphasis on fitting the larger values of y..

Neither the coupled simultaneous Equations (6.24) nor the Equations (6.27)
can be solved directly for a and b, but each pair can be solved by an iterative
method in which values of a and b are chosen and then adjusted until the two si-
multaneous equations are satisfied. (See Appendix A.5.)
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FIGURE 6.3

Least-squares fit of a straight line to the data by three different methods. (i) Standard least-squares
method with Gaussian statistics and experimental uncertainties; (ii) Gaussian statistics and analytic
uncertainties; (iii) Poisson statistics and analytic uncertainties. The analytic errors are expressed as
o?=a + bx,.
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TABLE 6.3
Comparison of fits to a selection of statistical data from Example 6.2 for three
different fitting methods

Inverse Number
distance of ) (&)}
squared counts 1 Gaussian Poisson
i x; (m™?) C; Standard o’ = y(x) o’ =y(x)
1 25.00 44 320 36.3 35.1
2 16.00 18 21.0 24.1 232
3 11.11 17 15.1 17.5 16.8
4 8.16 6 11.5 13.5 12.9
5 6.25 8 9.1 10.9 10.4
6 4.94 9 7.5 9.2 8.6
7 4.00 9 6.4 7.9 7.4
8 2.78 11 49 6.3 5.8
9 1.78 3 3.7 4.9 4.5
10 1.00 3 2.7 39 34
Sums 128 114.0 134.4 128.0
a 1.52 2.50 2.11
b 1.22 1.35 1.32
X2 13.7 17.6 15.5

Note: (1) Standard least-squares method with Gaussian statistics and experimental uncertainties; (2) Gaussian statis-
tics and analytic uncertainties; (3) Poisson statistics and analytic uncertainties. The analytic uncertainties are ex-
pressed as 02 = a + bx,.
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standard method for large data samples, we selected a low statistics sample to emphasize
the differences. We chose from the measurements of Example 6.2 only those events col-
lected at each detector position during the first 15-s interval, a total of 128 events at ten
different positions. The results of (i) calculations by the standard method, (ii) calcula-
tions with Gaussian statistics and with errors given by a; = y (x;) = a + bx;, and (iii) cal-
culations with Poisson statistics with errors as in method (ii) are listed in Table 6.3 and
illustrated in Figure 6.3. We note that method (i) appears to underestimate the number of

events in the sample, whereas method (ii) overestimates the number. Method (iii) with
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Poisson statistics and errors calculated as in method (ii) finds the exact number.

We can avoid questions of finite binning and the choice of statistics by mak-
ing direct use of the maximum-likelihood method, treating the fitting function as a
probability distribution. This method also allows detailed handling of problems in
which the probability associated with individual measurements varies in a complex
way from observation to observation. We shall pursue this subject further in Chap-
ter 10.

In general, however, the simplicity of the least-squares method and the diffi-
culty of solving the equations that result from other methods, particularly with more
complicated fitting functions, leads us to choose the standard method of least
squares for most problems. We make the following two assumptions to simplify the
calculation:
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1. The shapes of the individual Poisson distributions governing the fluctuations in
the observed y, are nearly Gaussian.

2. The uncertainties o; in the observations y; may be obtained from the uncertain-
ties in the data and may be approximated by a7 = y, for statistical uncertainties.

Linear function: y(x) = a + bx.
Chi-square:

[1 2

X2 = z [U_i(yi —a-— bx.‘)J

Least-squares fitting procedure: Minimize x> with respect to each of the parameters

simultaneously.
Solutions for least-squares fit of a straight line:
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Estimated uniform variance s*:

i

Statistical fluctuations:

gl =y, (raw data counts)

Uncertainties in coefficients:
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