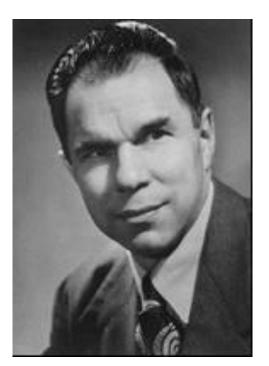

Los elementos del bloque f

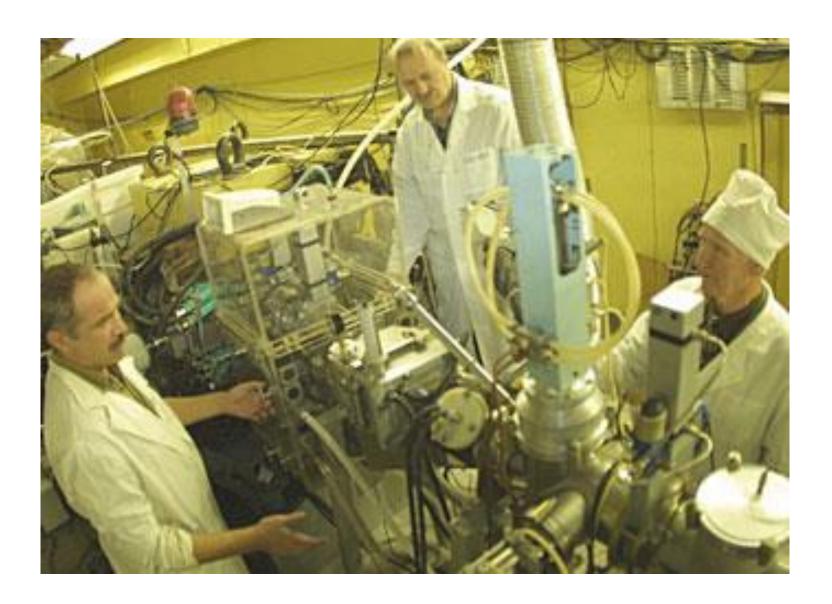
Química Inorgánica I


Lantanoides

Por desconocidos, en un principio se les llamó tierras raras, pero no tienen nada de raros. De hecho, el cerio es tan abundante como el cobre

Glen Theodore Seaborg (1912-1999)

1944



1964

En 1944, a los 32 años de edad, predijo la existencia de los elementos transuránidos y propuso incluir en la tabla periódica dos nuevos períodos originando la forma en que la conocemos actualmente. Premio Nobel de Química en 1951.

Laboratorio de obtención de transuránidos

Joint Livermore—Dubna team in Russia in front of the gas-filled-recoil separator used in studies of the superheavy elements.

http://www-cms.llnl.gov/about/cbnd.html

Lantanoides

Tabla 21.1 Configuraciones electrónicas de los elementos 57-71

Elemento	Configuración del átomo	Configuración del ion 3+
Lantano	[Xe] $6s^24f^05d^1$	[Xe] $4f^0$
Cerio	$[Xe] 6s^24f^15d^1$	[Xe] $4f^1$
Praseodimio	[Xe] $6s^24f^3$	[Xe] $4f^2$
Neodimio	[Xe] $6s^24f^4$	[Xe] $4f^3$
Prometio	[Xe] $6s^24f^5$	[Xe] $4f^4$
Samario	[Xe] $6s^24f^6$	[Xe] 4f ⁵
Europio	[Xe] $6s^24f^7$	[Xe] 4f ⁶
Gadolinio	$[Xe] 6s^24f^75d^1$	[Xe] $4f^7$
Terbio	[Xe] $6s^24f^9$	[Xe] 4f ⁸
Disprosio	[Xe] $6s^24f^{10}$	[Xe] 4f ⁹
Holmio	[Xe] $6s^24f^{11}$	[Xe] $4f^{10}$
Erbio	[Xe] $6s^24f^{12}$	[Xe] $4f^{11}$
Tulio	[Xe] $6s^24f^{13}$	[Xe] $4f^{12}$
Iterbio	[Xe] $6s^24f^{14}$	[Xe] $4f^{13}$
Lutecio	[Xe] $6s^24f^{14}5d^1$	[Xe] $4f^{14}$

Para recordar los orbitales f, visiten la página: http://winter.group.shef.ac.uk/orbitron/

Lantanoides: propiedades ...

- Todos son metálicos.
- Todos son blandos y moderadamente densos.
- Todos presentan el estado de oxidación 3+, aunque no exclusivamente.
- Funden cerca de los 1000 °C y hierven a 3000 °C aproximadamente.
- Su reactividad es parecida a la de los alcalinotérreos.

... Lantanoides: propiedades

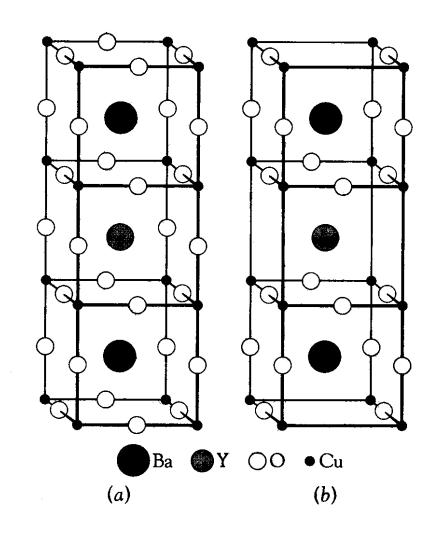
Todos se oxidan en agua

$$2M(s) + 6H2O \longrightarrow 2M(OH)3 + 3H2(g)$$

Los electrones 4f no participan en los enlaces y, por lo tanto, no influyen en la química de estos elementos.

Debido al poco efecto pantalla que ejercen los orbitales f. Se da una drástica reducción en el tamaño atómico conforme uno avanza a lo largo del período de los lantanoides que va de 117 a 100 pm. A esto se le conoce como la contracción lantánida.

¿Por qué se asocian los metales de transición escandio e itrio con los lantanoides?



... Lantanoides: aplicaciones

- Óxidos mixtos de europio e itrio se emplean en cinescopios.
- El primer superconductor no metálico era un óxido de lantano, bario y cobre.
- El primer superconductor de alta temperatura de transición (77 K) fue el YBa₂Cu₃O₇.

Lantanoides: aplicaciones

Cerámica Superconductora YBa₂Cu₃O₉

Actinoides

								/									
								/									
1																	18
1 H 1.0079	2										•	13	14	15	16	17	1 He 4.0026
3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.18
11 Na 22.990	12 Mg 24.305	3	4	5	6		8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 CI 35.453	18 Ar 39.94
19 K 39.098	20 Ca 40.078	21 Sc 41,956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.79
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92,906	42 Mo 95.9	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.3
55 CS 132.91	56 Ba 137.33	57-71	72 Hf 178.49	73 Ta 180.95	W 183.84	75 Re 186.21	76 Os 190.23	77 I r 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TJ 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	25 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mit (268)	110 Ds (271)	111 Uuu (272)	112 Uub (272)	113 Uut (272)	114 Uuq (272)	115 Uup (272)	116 Uuh (272)	117 Uus (272)	118 Uuo (272)
Hat 15056)[.at)f.gt 15006	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 141.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 161.93	68 Er 167.26	69 Tm 162.93	70 Yb 173.04	71 Lu 174.9
H _{at} 15006)[.at 1.50.56	Ji.at 15006	AC (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	91 Pu (240)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Actinoides

Tabla 21.2 Vidas medias del isótopo más duradero de cada actinoide

Elemento isótopo	Vida media
Actinio-227	22 años
Torio-232	$1.4 imes 10^{10}$ años
Protactinio-231	3.3×10^4 años
Uranio-238	4.5×10^9 años
Neptunio-237	$2.2 imes 10^6$ años
Plutonio-244	8.2×10^7 años
Americio-243	7.7×10^3 años
Curio-244	18 años
Berkelio-249	3.1×10^2 días
Californio-252	$3.6 imes 10^2$ días
Einsteinio-254	2.5×10^2 días
Fermio-253	4.5 días
Mendelevio-256	1.5 horas
Nobelio-254	3 segundos
Laurencio-257	8 segundos

Casi todos decaen por emisión de partículas alfa y radiación gama.

Tiempos de decaimiento

Table 12.1 Principal Isotopes of Transuranium Elements

<u> </u>		2 (1) - 1 (1) (1) (1) (4) (1) (3)
Isotope	Half-life	Quantities Available
²³⁷ Np	2,200,000 years	many kilograms
²³⁹ Pu	24,360 years	many kilograms
²⁴⁴ Pu	82,800,000 years	> 1 milligram
²⁴³ Am	7,650 years	> 100 grams
²⁴⁴ Cm	18.12 years	> 100 grams
²⁴⁷ Cm	16,000,000 years	traces
²⁴⁷ Bk	1,400 years	traces
²⁴⁹ Bk	314 days	> 1 milligram
²⁵¹ Cf	800 years	traces
²⁵² Cf	2.57 years	> 1 milligram
²⁵⁴ Es	276 days	> 1 milligram
²⁵⁷ Fm	94 days	> 0.001 milligram
²⁵⁸ Md	53 days	traces
²⁵⁵ No	3 minutes	traces
²⁵⁶ Lr	45 seconds	
²⁶¹ Rf	70 seconds	

Sources: Data from F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed., Wiley-Interscience, New York, 1980; and the Handbook of Chemistry and Physics, 50th ed., Chemical Rubber Co., Cleveland, 1969, pp. B-267 to B-561.

... Actinoides: propiedades

- Todos son radiactivos
- Sus tiempos de vida media decaen drásticamente conforme uno avanza en el período.
- Son menos reactivos que los actinoides.
- Presentan mayor variabilidad en sus estados de oxidación.
- Presentan efecto del par inerte en los electrones 7s.
 - ¿Qué usos se le dan al torio y al americio?

Actinoides: propiedades

Tabla 21.3 Configuraciones electrónicas de los elementos 89 a 103

Elemento	Configuración atómica	Configuración del ion 3+
Actinio	[Rn] $7s^25f^06d^1$	[Rn] $5f^{0}$
Torio	[Rn] $7s^25f^06d^2$	[Rn] $5f^1$
Protactinio	[Rn] $7s^25f^26d^1$	[Rn] $5f^2$
Uranio	[Rn] $7s^25f^36d^1$	[Rn] $5f^3$
Neptunio	[Rn] $7s^25f^46d^1$	[Rn] $5f^4$
Plutonio	[Rn] $7s^25f^6$	[Rn] $5f^5$
Americio	[Rn] $7s^25f^7$	[Rn] $5f^6$
Curio	[Rn] $7s^25f^76d^1$	[Rn] $5f^7$
Berkelio	[Rn] $7s^25f^9$	[Rn] $5f^8$
Californio	[Rn] $7s^25f^{10}$	[Rn] $5f^9$
Einsteinio	[Rn] $7s^25f^{11}$	[Rn] $5f^{10}$
Fermio	[Rn] $7s^25f^{12}$	[Rn] $5f^{11}$
Mendelevio	[Rn] $7s^25f^{13}$	[Rn] $5f^{12}$
Nobelio	[Rn] $7s^25f^{14}$	[Rn] $5f^{13}$
Laurencio	[Rn] $7s^25f^{14}6d^1$	[Rn] $5f^{14}$

Postactinoides

1								/									18
1 H 1,0079	2			•					•			13	14	15	16	17	1 He 4.0026
3	4											5	6	7	8	9	10
<u>Г</u> Б	Be 9.0122											B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.18
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.94
19 K 39.098	20 Ca 40.078	21 Sc 41.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 M n 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.683	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.79
37 Rb 25.462	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92,906	42 Mo 95.94	1C 98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.3
55 CS 132.91	56 Ba 137.33	57-71	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Uuu (272)	112 Uub (272)	113 Uut (272)	114 Uuq (272)	115 Uup (272)	116 Uuh (272)	117 Uus (272)	118 Uuo (272)
)f.gt 15036)[.at):3036	H.st 15036	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 161.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.9
)f.gt 15056)[.gt)(3036) .at)1/0/36	89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	91 Pu (241)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (258)	103 Lr (262)

Elementos postactinoides

- En realidad son metales de transición.
- Se les llama también transférmicos.
- Son sintéticos, inestables, con vidas medias muy cortas (10⁻⁴ segundos)
- Poco se conoce de su química.

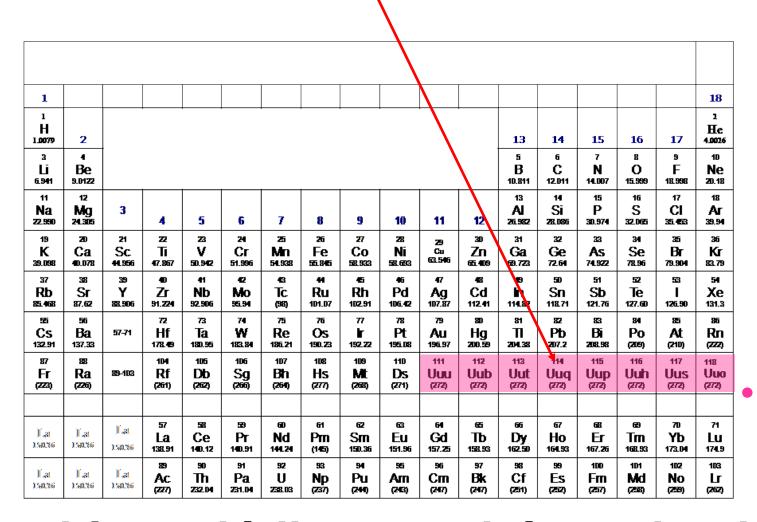
Los nuevos elementos

- ¿Se podrán obtener elementos más pesados que el Copernicio (Cp)?
- ¿Quién les pondrá el nombre?
- IUPAC dice: 0= nil, 1= un, 2= bi, 3= tri, etc. con la terminación "*ium*", por ej. el elemento ¹¹²Cp se llamó provisionalmente: *ununbium*
- Las "pandillas" se pelean el reconocimiento: rusos en Dubna, alemanes en Darmstadt y estadounidenses en Berkeley.

Los nuevos elementos ...cont.

Num. at.	símbolo	nombre	fecha
110	Ds	darmstadtio	1994, 2003
111	Uuu	unununium	2000
112	Cp	copernicio	2009
		- Carlotte and the second seco	
		v) , 115, 116(Lv) firmar.	

- Los físicos de partículas de alta energía sugieren la existencia de "islas de estabilidad", es decir, configuraciones nucleares lo suficientemente estables para ser detectadas.
- Posiblemente puedan obtenerse el 120, el 124 y el 126. ¿Se podrá? ...



¿Cómo serán los elementos transactínidos o transférmicos?

- Es muy probable que manifiesten efectos relativistas aún mayores que los del 6º periodo.
- La mayor estabilidad de los electrones 7s² en el 112Cp lo convertirán en el siguiente líquido noble.
- Posiblemente el ₁₁₄Uuq con una configuración 7s² 7p_{1/2}² sea también un líquido.
- En el 8º periodo aparecerá el bloque g con 18 elementos.
- Los orbitales 5g no alcanzarán a los 8s y, por lo tanto, tendrán constantes de apantallamiento de 1, lo que provocará que esos elementos tengan igual tamaño, electronegatividad y una química común.
- Sin considerar los efectos relativistas se predice el orden de llenado siguiente: 8*s*<5*g*<6*f*<7*d*<8*p*.
- Si los efectos relativistas (SO) se toman en cuenta, puede ocurrir que el orbital $8p_{1/2}$ se llene justo después del 8s.
- Así, el elemento 119 Uum quedaría debajo del francio pero con una valencia de +4 debido a la facilidad del ionización de sus $7p_{3/2}$.

Los elementos en el futuro

... Y LA QUÍMICA INORGÁNICA TAMBIÉN.

FIN DEL CURSO