Facultad de Química, UNAM Química Inorgánica I Semestre 2020-1 Curso Intersemestral

Víctor Fabián Ruiz Ruiz

Nombre:			

Instrucciones: Contesta y justifica brevemente las siguientes preguntas. Escribe las ecuaciones balanceadas cuando se requiera.

1) Origen del Universo reacciones nucleares

- 1. El isótopo ²¹⁰Pb sufre dos procesos consecutivos de decaimiento B -.
- a) ¿Cuál es el núclido producto de estos procesos?
- b) ¿Qué tipo de decaimiento sería el más probable que podría sufrir tal núclido?
- 2. El isótopo ²⁰¹Au sufre dos procesos consecutivos de decaimiento ^B dando origen al núclido.
- a) ²⁰³Au b) ²⁰³Tl c) ²⁰¹Tl d) ²⁰¹Ir

- 3. Determina los valores de A y Z que balancean la siguiente reacción nuclear y el núclido resultante de la subsecuente reacción de decaimiento radioactivo:

$$^{209}Po + n \rightarrow ^{A}Dy + ^{40}ZX + 2n$$

 $^{40}ZX \rightarrow __ + e^-$

4. El ²³⁵Th es un núclido pesado que es susceptible de sufrir un proceso de decaimiento alfa, dando origen al núclido _____; el cual tiene un exceso de _____ con respecto el número de por lo que éste es un núclido susceptible de sufrir un decaimiento β -.

a) ²³¹Ra; neutrones; protones b) ²³¹Th; c) ²³¹Ra; neutrones; protones protones; neutrones d) ²³¹Th; protones; neutrones

5. En una estrella como el sol se forman los siguientes elementos:

- a) del ¹H al ⁵⁶Fe
- b) sólo H
- c) ¹H y ⁴He d) del ⁵⁶Fe al ²³⁵U
- e) del ¹H al ¹²C

2) Propiedades periódicas

- 1. La primera afinidad electrónica del oxígeno es positiva (0.140 MJ/mol), mientras que la segunda es negativa (-0.744 MJ/mol) explica: ¿Por qué la segunda afinidad electrónica tiene signo negativo y la primera positivo?
- 2. Ordena las siguientes especies en forma creciente de su energía de ionización:

$$Mg^{+}_{(g)}$$
, Na $_{(g)}$, Na $^{+}_{(g)}$

3. ¿Cuál de las siguientes especies tiene una mayor afinidad electrónica? Establece la secuencia correcta de las siguientes especies ordenadas de acuerdo a su afinidad electrónica

$$N_{(g)}, O_{(g)}, N_{(g)}$$

4. La 1^a E.I. del Na es de 0.49 MJ/mol, mientras que su 2ª E.I. es de 4.56 MJ/mol. No obstante, los valores para los procesos análogos en **Cu** son de 0.75 MJ/mol y 1.96 MJ/mol. Explica a qué se debe que la diferencia en el caso del Cu no es tan pronunciada como en el caso del Na.

3) Parámetros de enlace

- 1. a) Estima el valor de la energía de disociación del enlace **I-F** si se sabe que las energías de disociación del enlace I-I y F-F es de 151 kJ/mol y 158 kJ/mol, respectivamente.
- **b)** De acuerdo con la definición de electronegatividad de Pauling, que valor de energía se esperaría observar experimentalmente para la disosiación de este enlace.
- 2. a) Estima el valor de la energía de disociación del enlace **H-F** si se sabe que las energías de disociación del enlace H-H y F-F es de 436 kJ/mol y 158 kJ/mol, respectivamente.
- b) De acuerdo con la definición de electronegatividad de Pauling, que valor de energía se esperaría observar experimentalmente para la disosiación de este enlace.

3. Determina el valor de la energía asociada al siguiente proceso:

$$O_2(g) \rightarrow 20^{2-}(g)$$

4) Enlace Químico y Geometría molecular

- 1. Traza el ciclo de Born Haber para el AlCl₃.
- a) A partir de éste, calcula el valor de Uo.
- **b)** Calcula el valor de *Uo* mediante la aproximación de la ecuación de Kapustinsky.
- c) ¿Hay alguna diferencia entre ambos valores? ¿A qué se debe?
- **2.** El término **corindón** designa a una estructura hexagonal típica de ciertos compuestos de estequiometría A_2B_3 ; su nombre proviene del Al_2O_3 mineral.
- a) Traza el ciclo de Born-Haber para el Al₂O₃.
- **b)** A partir de éste, calcula el valor de *Uo*.
- **c)** Suponiendo que este es un compuetso con fuerte carácter iónico, determina (aproximadamente) el valor de la constante de Madelung que podría atribuirse al arreglo cristalino tipo corindón.
- **3.** Estima el valor de la energía de ionización del **Cs**, a partir de los datos termoquímicos del **CsCl** y un valor adecuado de *Uo*.
- **4.** Estima el valor de la **2ª A. E.** del **S**, tomando los datos termoquímicos del **ZnS** y un valor adecuado de *Uo*.
- **5.** El **ZnO** es un compuesto que puede adoptar dos estructuras cristalinas: wurtzita y blenda (a esto se le conoce como polimorfismo),
- **a)** Estima el valor de Uo para cada una de las estructuras del **ZnO**
- **b)** Con los valores anteriores, determina el □H de transformación de la fase blenda a la fase wurtzita ¿Cuál de las dos es más estable?
- **6.** Calcula los valores de entalpía de formación para el **CuF** (estructura tipo wurtzita) y para **CuF**₂ (estructura tipo rutilo)
- a) ¿Cuál de los dos compuestos es más estable?
- **b)** ¿Cuál de los dos compuestos se esperaría que tuviera un menor punto de fusión y por qué?
- 7. Traza el ciclo de Born-Haber para el CoCl₂.
- **a)** A partir de éste, calcula el valor de *Uo*.
- **b)** Calcula el valor aproximado del radio iónico de $\mathbf{Co^{2+}}$.

8. Se sabe que en un exceso de Cl^- , el compuesto anterior puede formar el compuesto $[\text{CoCl}_6]^{4^-}$, el cual tiene un momento magnético de 3.87 μ_B y puede reaccionar con amoníaco de acuerdo con la siguiente reacción:

$$[CoCl_6]^{4-} + 4NH_3 \rightarrow [Co(NH_3)_4Cl_2] + 4Cl^{-}$$

- **a)** Determina la hibridación y geometría que adquiere tal compuesto
- **b)** Clasifica a los orbitales p del $\mathbf{Co^{2+}}$ de acuerdo a la simetría del compuesto.
- **c)** Posteriormente, si se añade un exceso de amoniaco puede llegarse al siguiente compuesto:

$$[Co(NH_3)_4Cl_2] + 2NH_3 \rightarrow [Co(NH_3)_6]^{3+}$$

Si este último compuesto es **diamagnético**, ¿Tiene la misma hibridación y geometría que al principio?

- **9.** En la secuencia de halogenuros de plata: **AgCl**, **AgF** y **AgBr**, ¿Cuál presentaría una menor solubilidad en aqua? ¿Por qué?
- **10.** Ordena los siguientes compuestos en una serie de mayor a menor carácter covalente de su enlace:

11. La purina es un compuesto orgánico heterocíclico aromático cuya estructura se encuentra representada en la siguiente figura:

Determina si los átomos de nitrógeno numerados tienen o no la misma hibridación.

12. Determina la hibridación (del átomo central, la geometría y la polaridad de las siguientes especies:

 $\begin{array}{c} SO_2 \\ CIO_3 \\ SbCl_5^2 \\ HCN \\ HCHO \\ NO_2 \\ PF_4 \\ [I_3]^T \\ NOF_2 \\ H_3PO_2 \end{array}$

SOF₄

5) Ácidos y bases

Es conocido que las aminas poseen mayor carácter básico cuando disminuye el carácter s en la hibridación del átomo de nitrógeno. Tomando en cuenta lo anterior, ordena los siguientes compuestos en orden creciente de basicidad esperada:

, CH_3CN , $(CH_3)_3N$

Explica el por qué del orden propuesto.

El ion anilinio (anilina protonada, Ph-NH₃⁺) se comporta como un ácido fuerte cuando el disolvente es amoniaco no obstante, su carácter en agua es de ácido débil.

- a) De acuerdo con la definición del sistema del disolvente, plantea las ecuaciones de la reacción de este ion con ambos disolventes.
- b) En términos de la definición de Bronsted-Lowry, ¿Cuál de las tres bases involucradas es la base más fuerte? ¿Por qué?

En la serie de óxidos de vanadio: V₂O₃, VO, y VO₂, y tomando en cuenta la definición de Lux-Flood, determina ¿cuál de ellos tendrá un mayor carácter básico? ¿Por qué?

Es sabido que el MgO y el ZnO son óxidos fuertemente básicos sin embargo, sus parámetros de acidez en concordancia con la definición de Lux-Flood son: $a_{MqO} = -4.5$ y $a_{ZnO} = -3.2$. Explica a qué puede atribuirse esta diferencia.

Al disolver AgF(s) en $BrF_3(l)$ se produce el "complejo" de Ag+ formulado como AgBrF4. De acuerdo con la definición del sistema del disolvente el AgF se comporta como _____, puesto que _____ la concentración del anión característico del disolvente.

a) Base; incrementa b) Ácido; incrementa c) Ácido; disminuye d) Base; disminuye

En este contexto y ayudándote de los conceptos de ácidos y bases duros y blandos, elige la(s) especie(s) que esperarías se comporte(n) como ácido en este disolvente fluorado

> KF; BF₃; SnF₄; MgF₂

Determina la dirección hacia la cual se efectuarían las siguientes reacciones en fase gaseosa:

$$CuI_2+2CuF \rightarrow CuF_2 + 2CuI$$

 $CoBr_2 + HgF_2 \rightarrow CoF_2 + HgBr_2$

Tomando en cuenta los conceptos de ácidos y bases duros y blandos, en cada de los siguientes pares de compuestos, indica cual esperarías fuese el menos soluble en agua.

AgI y AgF

HgS y Hg(NO₃)₂

CaI₂ y PbI₂

Tomando en cuenta que, en la formación de los minerales se cumple con el principio de asociación de ácidos y bases duros y blandos. ¿Cuál(es) de los siguientes compuestos esperarías encontrar como mineral?:

HgS, CaF₂, AgF y PbS

6) Hidrólisis de cationes

Los siguientes cationes: $\mathbf{Eu^{3+}}$, $\mathbf{Co^{3+}}$, $\mathbf{Au^{3+}}$ y $\mathbf{Al^{3+}}$ ordenos en forma creciente de su fuerza ácida:

- a) $Au^{3+} > Al^{3+} > Co^{3+} > Eu^{3+}$
- a) $AI^{3+} > Au^{3+} > Eu^{3+} > Co^{3+}$
- a) $Eu^{3+} > Co^{3+} > Al^{3+} > Au^{3+}$
- a) $Eu^{3+} > Co^{3+} > Au^{3+} > Al^{3+}$

Se tiene una mezcla de los siguientes cationes: Ca²⁺, Al³⁺, K⁺, Sn⁴⁺. Estos cationes ordenados de acuerdo a su fuerza ácida creciente, por lo que el primer catión en precipitar al agregar **NaOH** sería el . .

- a) $Sn^{4+} > Al^{3+} > Ca^{2+} > K^+$;
- b) $Sn^{4+} > Al^{3+} > Ca^{2+} > K^+;$ c) $K^+ > Ca^{2+} > Al^{3+} > Sn^{4+};$ d) $K^+ > Ca^{2+} > Al^{3+} > Sn^{4+};$

7) Enlace de coordinación

De acuerdo con la teoría de enlace valencia, determina la hibridación del ion Ni2+ y la geometría esperada para el compuesto [Ni(NH₃)₄]²⁺, se sabe que éste presenta un comportamiento paramagnético.

- a) *dsp*², cuadrada
- b) dsp², tetraédrica

c) sp^3 , tetraédrica d) sp^3 , cuadrada

Se sabe que el compuesto [FeCl₆]⁴⁻ tiene un carácter paramagnético.

- a) Determina la hibridación y geometría que adquiere tal compuesto
- b) Este compuesto puede reaccionar con cianuro de acuerdo con la siguiente reacción:

 $[FeCl_6]^{4-} + 4CN^- \rightarrow [Fe(CN)_4Cl_2]^{4-} + 4Cl^-$ Determina el grupo puntual del nuevo compuesto formado.

c) ¿Cuál es el nombre de este último compuesto de Fe?

8) Oxidación y Reducción

Balancea la siguiente reacción redox en medio ácido:

$$MnO_4^- + H_2SO_3 \to Mn^{2+} + HSO_4^-$$

Con ayuda de los valores de potenciales estándar; determina cuál(es) de las siguientes reacciones son espontáneas a 25 °C:

$$Mg^{2+}+Ca \rightarrow Mg + Ca^{2+}$$

$$Fe^{2+}+AI \rightarrow AI^{3+}+Fe$$

$$Cu + H^+ \rightarrow Cu^{2+} + H_2$$

b) Considerando las reacciones espontáneas como componentes de una celda. Determina el potencial de la celda esperado para cada sistema que resulto espontáneo.

La dismutación o desproporción del Cl₂ en disolución acuosa genera a los iones CI e CIO. Plantea la reacción de este proceso y determina cualitativamente cómo influye el pH en esta reacción de desproporción.

Los valores de potenciales para el diagrama de Latimer del V en medio ácido son los siguientes:

$$VO_2^+ \xrightarrow{1.00} VO^{2+} \xrightarrow{0.34} V^{3+} \xrightarrow{-0.26} V^{2+} \xrightarrow{-1.13} V$$

- a) Calcula el valor del potencial de la reacción del paso de VO_2^+ a V^{3+} .
- b) Ordena los pares en la escala lineal de potencial estándar

- c) En esta escala, determina la especie oxidante de vanadio más fuerte
- d) Construye el diagrama de Frost para el vanadio e identifica en él a esta especie oxidante.

Los valores de potenciales, en Volt, para el diagrama de Latimer del Fe, tanto en medio ácido como medio básico son los siguientes:

Medio ácido

$$FeO_4^{2-} \xrightarrow{2.20} Fe^{3+} \xrightarrow{0.77} Fe^{2+} \xrightarrow{-0.44} Fe$$

Medio básico

$$\text{FeO}_4^{2-} \xrightarrow{0.81} \text{Fe}_2\text{O}_3 \xrightarrow{-0.86} \text{Fe(OH)}_2 \xrightarrow{-0.89} \text{Fe}$$

- a) Calcula el valor del potencial indicado como E₁.
- **b)** Construye, en una misma gráfica, los diagramas de Frost en medio ácido y en medio básico para el hierro. ¿En cuál de los dos medios será más estable el estado de oxidación +3 del hierro?
- c) Con ayuda de este diagrama, determina si alguna de las especies de Fe es susceptible de sufrir un proceso de dismutación.