Universidad Nacional Autónoma de México

Facultad de Química

Química del Estado Sólido

5. Difracción de rayos X

Víctor Fabián Ruiz Ruiz.

K

Espectro de emisión de rayos X de un ánodo de **Mo**

Radiación Líneas característica = espectrales

$$E = \frac{hc}{\lambda}$$

 $K\alpha 1 = 0.7093 \text{ Å} = 17.48 \text{ keV}$

Kα2 = 0.7135 Å = 17.38 keV

 $K\beta 1 = 0.6322 \text{ Å} = 19.61 \text{ keV}$

0.2 0.4 0.6 0.8 1.0 Longitud de onda (Å) Bremsstrahlung = Continuo

Spektrale Intensität In₂

Anode materials and monochromatization of X-rays

atom no.	element	Κα	Κα1	Κα2	κβ
24	chromium	2.29092	2.28962	2.29351	2.08480
26	iron	1.93728	1.93597	1.93991	1.75643
27	cobalt	1.79021	1.78892	1.79278	1.62075
28	nickel	1.65912	1.65784	1.66169	1.50010
29	copper	1.54178	1.54051	1.54433	1.39217
42	molybdenum	0.71069	0.70926	0.71354	0.63225
47	silver	0.56083	0.55936	0.56378	0.49701
74	tungsten	0.21060	0.20899	0.21381	0.18436

Longitud de onda (en Å) de diferentes líneas de emisión de algunos matales utilizados como ánodos.

INTENSIDAD DE UN HAZ DIFRACTADO

La intensidad de los haces difractados dependen básicamente de los siguientes factores:

1. La naturaleza de la radiación.

2. El ángulo de Bragg.

3. El "poder" de difracción de los átomos presentes (**factor de dispersión**).

4. El arreglo de los átomos en el cristal (**factor de estructura**).

5. Vibración térmica de los átomos (factor de temperatura)

6. El espesor, forma y grado de perfección del cristal (factor de forma).

7. El número de planos equivalentes (hkl) presentes (multiplicidad)*

$$f_a = \sum_{i=1}^{4} a_i \cdot e\left(-b_i \left(\frac{sen\theta}{\lambda}\right)^2\right) + c$$

Coeficientes de **Cromer-Mann**

5.3 FACTOR DE DISPERSIÓN

5.4 FACTOR DE ESTRUCTURA

 $F_{hkl} = \sum_{n=1}^{N} f_n \cdot e(2\pi i(hx_n + ky_n + lz_n))$

Calculando d_{hkl} en los otros sistemas

Ortorrómbico

$$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Hexagonal

$$\frac{1}{d_{hkl}^2} = \frac{4}{3} \frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}$$

$\frac{1}{d_{hkl}^2} = \frac{(h^2 + k^2 + l^2)\sin\alpha^2 + 2(hk + kl + hl)(\cos\alpha^2 - \cos\alpha)}{a^2(1 - 3\cos\alpha^2 + 2\cos\alpha^2)}$

