

RESUMEN

Energética de los Compuestos covalentes

ESTABILIDAD RELATIVA DE LOS NÚMEROS DE OXIDACIÓN Y SU REL. C/ENERGÍA

¿De qué depende que se alcance un número de oxidación mayor? De que la formación de los enlaces extras paguen el gasto de energía para alcanzar el siguiente número de oxidación.

RESUMEN

Energética de los Compuestos covalentes

ESTABILIDAD RELATIVA DE LOS NÚMEROS DE OXIDACIÓN Y SU REL. C/ENERGÍA

La estabilidad relativa de un estado de oxidación en el que el número de oxidación es 2 menor que el número de oxidación del grupo es un ejemplo del **efecto de par inerte** y es un tema recurrente dentro del bloque p.

En el Grupo 13 y 14,

El número de oxidación del grupo 13 es 3, el estado de oxidación 1 aumenta en estabilidad en el grupo. De hecho, el estado de oxidación más común del talio es TI (I).

No existe una explicación simple para este efecto:

 la gran energía que se necesita para eliminar los electrones ns² después de que se haya eliminado el electrón np¹.

Pb
$$6(s^2p_x^1p_y^1)_{(g)} \rightarrow Pb^* 6(s^1p_x^1p_y^1 p_z^1)_{(g)}$$

 La baja entalpía de enlace M–X (E_{M-X})para los elementos de bloque p más pesados (compuesto molecular) y/o la energía reticular (ΔH_{red}) decreciente a medida que los radios atómicos aumentan en un grupo (sal iónica).

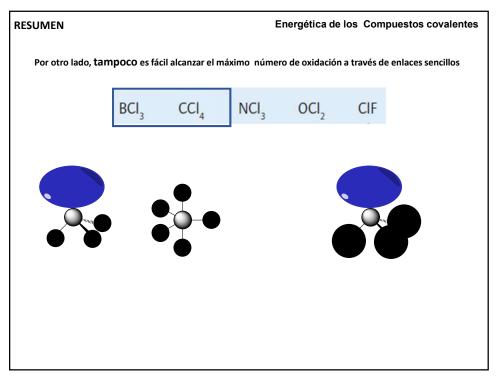
7

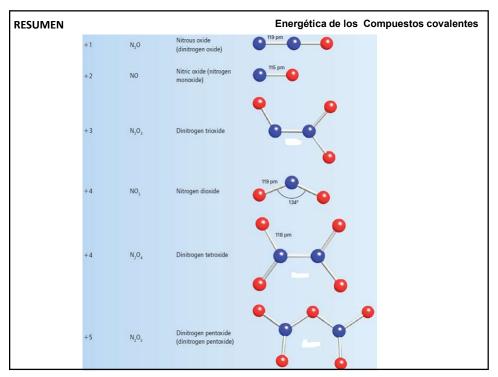
RESUMEN

Energética de los Compuestos covalentes

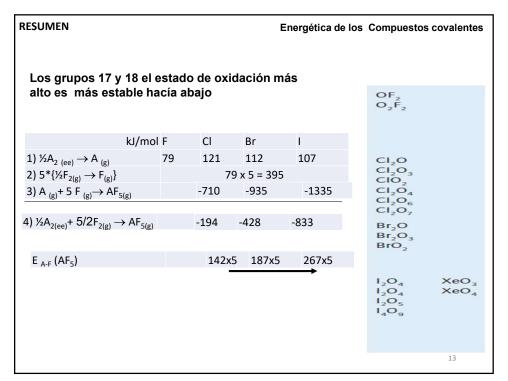
ESTABILIDAD RELATIVA DE LOS NÚMEROS DE OXIDACIÓN Y SU REL. C/ENERGÍA

El número de oxidación del grupo 13 es 3, el estado de oxidación 1 aumenta en estabilidad en el grupo. De hecho, el estado de oxidación más común del talio es Tl (I).


- ns² → np¹.
- La baja E _{M-X} para los elementos más pesados (compuesto molecular)
- y/o


 ΔH_{red} decrece a medida que los radios atómicos aumentan en un grupo (sal iónica).

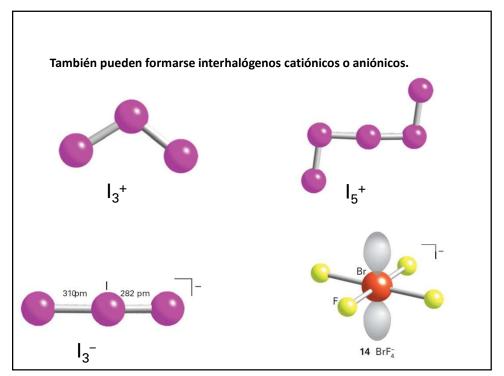
PARA LAS SALE IÑONICAS


AIF ₃	La suma de las tres
	primeras energías
u	de ionización de TI
	(5438 kJ /mol) no
u	es mayor que el
u	valor de Ga (5521 kJ
u	/mol) y solo
	ligeramente mayor
TIF ₃	que el valor de In (5083 kJ /mol)

RESUMEN					Energética de l	os Compue	estos covalentes
	B ₂ O ₃ network solids glasses	CO CO ₂ C ₃ O ₂	N ₂ O NO N ₂ O ₃ NO ₂ N ₂ O ₄ N ₂ O ₅	O ₂ O ₃	OF ₂ O ₂ F ₂		
	Al ₂ O ₃	SiO ₂ glasses minerals	P ₄ O ₆ P ₄ O ₁₀	SO ₂ SO ₃	CI ₂ O CI ₂ O ₃ CIO ₂ CI ₂ O ₄ CI ₂ O ₆ CI ₂ O ₇		
	Ga₂O₃	GeO ₂	As ₂ O ₃ As ₂ O ₅	SeO ₂ SeO ₃	Br ₂ O Br ₂ O ₃ BrO ₂		
	In ₂ O ₃	SnO SnO ₂		TeO ₂ TeO ₃	I ₂ O ₄ I ₂ O ₄ I ₂ O ₅ I ₄ O ₉	XeO ₃ XeO ₄	
		PbO PbO ₂					

RESUMEN	RESUMEN Energética de los Compuestos covalent					covalentes		
Los grupos 15 y 16 , podría pensarse en un efecto de alternación								
	Δ_{f}	H [⊕] kJ	l/mol					
S(g) +223		Te(g) +199		SeF ₄ -850		SF ₆	SeF ₆	TeF ₆
			190.5	212.5	259	287.3	245.5	291.1


INTERHÁLOGENOS


Excepto por el flúor y la astato, los halógenos existen con números de oxidación que varían de -1 a 7. El átomo de flúor pequeño y altamente electronegativo es eficaz en la oxidación de muchos elementos a estados de alta oxidación.

XY	XY ₃	XY ₅	XY ₇
CIF	CIF₃	CIF ₅	
BrF*	BrF ₃	BrF ₅	
IF	$(IF_3)_n$	IF ₅	IF ₇
BrCl			
ICI	I ₂ CI ₆		
IBr			

Los interhalógenos binarios son compuestos moleculares con fórmulas XY, XY3, XY_5 y XY_7 , donde el halógeno X más pesado y menos electronegativo es el átomo central.

También forman interhalógenos ternarios del tipo XY_2Z y XYZ_2 , donde Z también es un átomo de halógeno.

XY	XY ₃	XY ₅	XY ₇
CIF	CIF ₃	CIF ₅	
BrF*	BrF ₃	BrF ₅	
IF	$(IF_3)_n$	IF ₅	IF ₇
BrCl			
ICI	I ₂ CI ₆		
IBr			

¿Que geometría tienen cada uno de los interhalógenos?

Recuerda la teoría de repulsión entre los pares electrónicos de la c apa de valencia TRPECV (VSEPR)