
Química Inorgánica Covalente

Serie 3

- 1.- ¿Por qué el borano no es BH₃ si no B₂H₆? Describa el enlace tricéntrico deficiente en electrones (3c-2e).
- 2.- ¿Por qué el BH₃ dimeriza a través de enlaces puente con hidrógeno y no a través de un enlace B-B como el etano?

- 3.- ¿Qué explicación puede dar al hecho de que las estructuras de los cloruros de Boro y Aluminio sean BCl₃ (monomérica) y Al₂Cl₆ (dimérica)?
- 4.- Los halogenuros de boro reaccionan con bases como NMe₃ según el siguiente orden BI₃ > BBr₃ > BCl₃ > BF₃. Sin embargo este orden de acidez es contrario para los halogenuros de Al (AlI₃ < AlBr₃ < AlCl₃). Explique.
- 5.- Discuta sobre la naturaleza de los enlaces GN–E (Gas Noble Elemento). Desarrolle el diagrama cualitativo de una molécula simple como el KrH₂.
- 6.- Argumente por que la teoría de unión-valencia no puede explicar los enlaces en gases nobles o interhalógenos satisfactoriamente.
- 7.- Factores de los que depende la formación de enlaces múltiples.
- 8.- Explique porque son diferentes los enlaces dobles de los elementos pesados de los que forman los elementos del 2do periodo, como por ejemplo los alquenos vs R₂Si=SiR₂.
- 9.- Ordene de acuerdo a la fuerza de los enlaces múltiples homonucleares formados: $(Y_2Si=SiY_2)$, (YP=PY) y $(Y_2S=S)$. Explique.
- 10.- Prediga la estructura de las siguientes especies $NO_3^ XeF_7^-$, ICl_2^+ . Dibuje cada una (incluya los pares libres) y nombre la geometría resultante.
- 11.-¿De acuerdo con los diagramas de Walsh de OM, cuál es la geometría de: BH₄+, NH₄+, BH₄-, y CH₄-? ¿Por qué (en 3 o 4 palabras)?

