1 Simetría en moléculas y cristales

Parte I. Simetría molecular

- 1.1 Operaciones y elementos de simetría
- 1.2 Grupos puntuales de simetría
- 1.3 Comportamientos de Simetría

1.1 Operaciones de simetría

En simetría molecular, se define *operación de simetría* como una permutación de átomos que transforma una molécula o cristal en un estado que no es posible distinguir del estado original. Asociada a cada operación, hay un *elemento de simetría*, que es el punto, línea o plano respecto del cual se realiza la operación de simetría (tabla 1.1). Una molécula presenta una simetría de tipo *puntual*, lo que significa que todos sus elementos de simetría pasan por un único punto, en contraste con un cristal que presenta simetría de tipo *espacial*.

Tabla 1.1. Operaciones y elementos de simetría								
Operación de simetría y su símbolo		Elemento de simetría y su símbolo						
Identidad	\boldsymbol{E}							
Rotación propia $2\pi/n$	C_n^m	Eje de simetría de orden n (eje propio)	C_n					
Reflexión	σ	Plano de simetría	σ					
Inversión	i	Centro de inversión	i					
Rotación impropia $2\pi/n$	S_n^m	Eje impropio de orden n^*	S_n					

^{*} Obsérvese que $S_1 = \sigma$ y $S_2 = i$.

Identidad. La operación identidad deja la molécula tal cual. Es la única operación de simetría que tiene cualquier molécula y que no requiere de ningún elemento de simetría.

Eje propio. Existe un eje propio de orden n, cuando la molécula no cambia después de una rotación de $360^{\circ}/n$ (figuras 1.1 y 1.2). El eje de mayor orden de una molécula se denomina *eje principal* y, por convención, define el eje de coordenadas z.

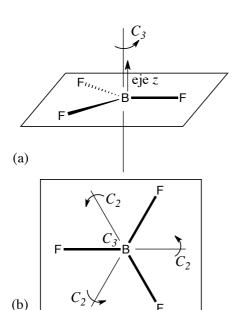


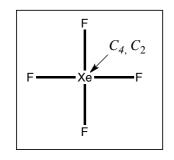
Figura 1.1. (a) Una molécula triangular plana como el trifluoruro de boro, tiene un eje C_3 perpendicular al plano que contiene los cuatro átomos de la molécula.

(b) Además, tiene **tres** ejes C_2 perpendiculares al eje C_3 . El eje C_3 es el *eje principal* de la molécula (el de mayor orden).

Un eje C_3 tiene un número infinito de operaciones de simetría asociadas con él. Sin embargo, sólo es necesario considerar dos:

$$C_3^1$$
 (giro de 120°) y C_3^2 (giro de 2 × 120° = 240°), ya que C_3^3 (giro de 3 × 120° = 360°) equivale a la identidad (E), C_3^4 (giro de 4 × 120° = 480° \equiv 120°) equivale a C_3^1 , etc.

La molécula de BF₃ tiene 1 átomo en el eje C_3 y 3 fuera de él. Para que pueda existir un eje de orden 3, el número de átomos de un mismo tipo fuera del eje tiene que ser 3 o un múltiplo de 3.



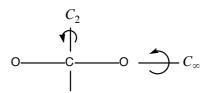


Figura 1.2. Una molécula plano—cuadrada como el tetrafluoruro de xenon, tiene un eje C_4 perpendicular al plano que contiene los cinco átomos de la molécula, pero también un eje C_2 que coincide con el C_4 . La existencia de un eje C_4 implica la de un eje C_2 . En general, la existencia de un eje de orden n implica la existencia de ejes cuyo orden sea divisor de n.

También existen en esta molécula $\mathbf{4}$ ejes C_2 perpendiculares al C_4 .

Figura 1.3. Una molécula lineal como el dióxido de carbono, el eje de enlace OCO es un eje C_{∞} (y también C_1 , C_2 , C_3 , etc.). Perpendicularmente a él existen infinitos ejes C_2 .

Plano de simetría. Una reflexión en torno a un plano de simetría cambia un átomo por otro situado a la misma distancia, al otro lado del plano, y en la prolongación de la recta que une al átomo con el plano (figuras 1.4 y 1.5).

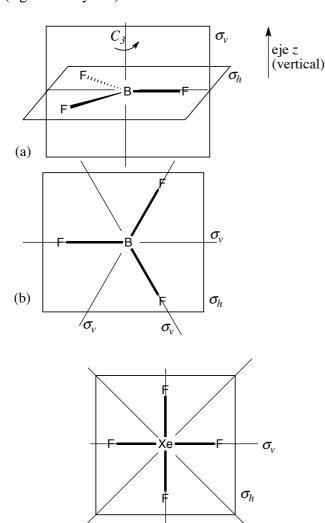


Figura 1.4. La molécula de trifluoruro de boro tiene un plano de simetría que contiene a sus cuatro átomos y **tres** planos equivalentes perpendiculares a éste.

Por convenio, la dirección vertical es la definida por el eje de mayor orden (en este caso el C_3), por lo que al plano que contiene los cuatro átomos de la molécula se le denomina plano horizontal (σ_h) y a los otros tres, planos verticales (σ_v).

De las operaciones de simetría asociadas con un plano, sólo es necesario considerar una: σ^1 , ya que σ^2 equivale a la identidad (E), σ^3 equivale a σ^1 , etc.

En el plano de simetría puede haber cualquier número de átomos, pero fuera de él ha de haber un número par de átomos de cada tipo.

Figura 1.5. La molécula de tetrafluoruro de xenón tiene un plano horizontal y **cuatro** planos verticales. Estos cuatro planos verticales no son equivalentes entre sí, pues dos cortan a los enlaces Xe–F mientras que los otros dos los bisecan. Para distinguirlos, a éstos últimos se les denomina planos diedros (σ_d).

Centro de inversión. La operación de inversión consiste en proyectar cada punto de la molécula a una distancia igual en el otro lado del centro de inversión (figura 1.6). Para que una molécula tenga un centro de inversión, es necesario que el número de átomos de cada tipo situados fuera del centro de inversión sea par. Dos inversiones consecutivas (i²) equivalen a la operación identidad.

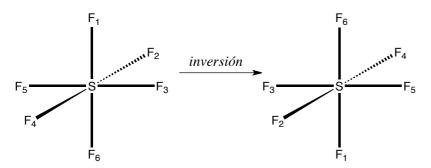


Figura 1.6. La operación de inversión en la molécula SF₆.

Eje impropio. La rotación impropia es una operación compuesta que consiste en una rotación convencional (propia) seguida de una reflexión entorno a un plano perpendicular al eje de rotación (figura 1.7).

- Si existe un eje de simetría C_n y un plano de simetría perpendicular al mismo, también existe un eje impropio S_n .
- El eje S_1 (giro de 360° seguido de reflexión) equivale a un plano horizontal σ .
- El eje S_2 (giro de 180° seguido de reflexión) equivale al centro de inversión i.
- El eje S_3 (y en general, cuando n es impar) implica la existencia de C_3 y σ_h (figura 1.8).
- El eje S_4 (y en general, cuando n es par) implica la existencia de C_2 , pero no de C_4 ni σ_h . Por ejemplo, en el metano existe un eje S_4 sin que exista un eje C_4 ni un plano perpendicular al mismo (figura 1.9).



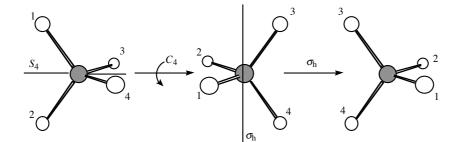


Figura 1.7. Uno de los ejes de rotación impropia S_4 del metano.

S_3, C_3 S_3, C_3 S_4, C_5 S_5, C_6 S_6, C_6 S_7, C_8

Ejes impropios de orden impar

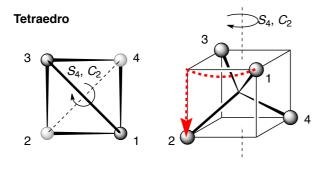
La operación S_3 permuta 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1

Operaciones independientes:

$$S_3^{\ 1}, \ S_3^{\ 2} \equiv C_3^{\ 2}, \ \mathbf{S_3^{\ 3}} \equiv \sigma_{\mathbf{h}}, \ S_3^{\ 4} \equiv C_3^{\ 1}, \ S_3^{\ 5}, \ S_3^{\ 6} \equiv E$$

Un eje impropio S_3 implica un eje propio C_3 y un plano de simetría perpendicular.

Figura 1.8. Operaciones derivadas de un eje impropio S_3 . Un eje impropio de orden impar implica la existencia de un eje propio del mismo orden y de un plano de simetría horizontal.

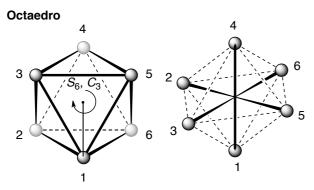


La operación S_4 permuta $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$

Operaciones independientes:

$$S_4^1$$
, $S_4^2 \equiv C_2^1$, S_4^3 , $S_4^4 \equiv E$

Un eje impropio S_4 implica un eje propio C_2



La operación S_6 permuta 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1

Operaciones independientes:

$$S_6^{\,1}, \, S_6^{\,2} \equiv C_3^{\,2}, \, S_3^{\,3} \equiv i, \, S_6^{\,4} \equiv C_3^{\,1}, \, S_6^{\,5}, \, S_6^{\,6} \equiv E$$

Un eje impropio S_6 implica un eje propio C_3

Figura 1.9. Operaciones derivadas de un eje impropio S_4 y de un eje impropio S_6 . Un eje impropio de orden impar NO implica la existencia de un eje propio del mismo orden ni de un plano de simetría horizontal.

La tabla 1.2 resume las operaciones asociadas a los elementos de simetría más comunes.

Tabla 1.2. Operaciones asociadas a algunos elementos de simetría										
Elemento de simetría	Operaciones asociadas	Operaciones independientes								
E	E	\boldsymbol{E}								
C_1	$C_1^{\ 1} \equiv C_1^{\ 2} \equiv C_1^{\ 3} \equiv \dots \equiv E$	(equivale a <i>E</i>)								
C_2	$C_2^1, C_2^2 \equiv E, C_2^3 \equiv C_2^1 \dots$	$C_2{}^1$								
C_3	$C_3^1, C_3^2, C_3^3 \equiv E, C_3^4 \equiv C_3^1 \dots$	C_3^1, C_3^2								
C_4	C_4^1 , $C_4^2 \equiv C_2^1$, C_4^3 , $C_4^4 \equiv C_2^2 \equiv E$, $C_4^5 \equiv C_4^1$	C_4^1 , C_4^3 (e implica un eje C_2)								
σ	σ^1 , $\sigma^2 \equiv E$, $\sigma^3 \equiv \sigma \dots$	σ								
i	$i^1, i^2 \equiv E, i^3 \equiv i^1 \dots$	i								
S_1	$S_1^1 \equiv \sigma_h, S_1^2 \equiv E, S_1^3 \equiv \sigma_h \dots$	(equivale a σ_h)								
S_2	$S_2^{\ 1} \equiv i, S_2^{\ 2} \equiv E, S_2^{\ 3} \equiv i \ldots$	(equivale a i)								
S_3	S_3^1 , $S_3^2 \equiv C_3^2$, $S_3^3 \equiv \sigma_h$, $S_3^4 \equiv C_3^1$, S_3^5 , $S_3^6 \equiv E \dots$	S_3^1 , S_3^5 (e implica un eje C_3 y σ_h)								
<i>S</i> ₄	S_4^1 , $S_4^2 \equiv C_2^1$, S_4^3 , $S_4^4 \equiv E$, $S_4^5 \equiv S_4^1$	S_4^1 , S_4^3 (e implica un eje C_2)								

Clases de operaciones de simetría. En lo que sigue, agruparemos las operaciones frente a las cuales las propiedades de una molécula se comportan siempre de forma equivalente. A estos conjuntos de operaciones se les denomina clases de operaciones de simetría. Por ejemplo, las operaciones C_4^1 y C_4^3 , que corresponden a sendos giros de 90° de sentidos inversos, pertenecen a la misma clase y las denotaremos como 2 C_4 , mientras que la operación $C_4^2 = C_2$ (giro de 180°) pertenece a otra clase.

Ejercicio 1.1. Localiza todos los ejes y planos de simetría de (a) un tetraedro, (b) un octaedro. ¿Qué operaciones de simetría, agrupadas por clases, se deducen?

1.2 Grupos puntuales de simetría

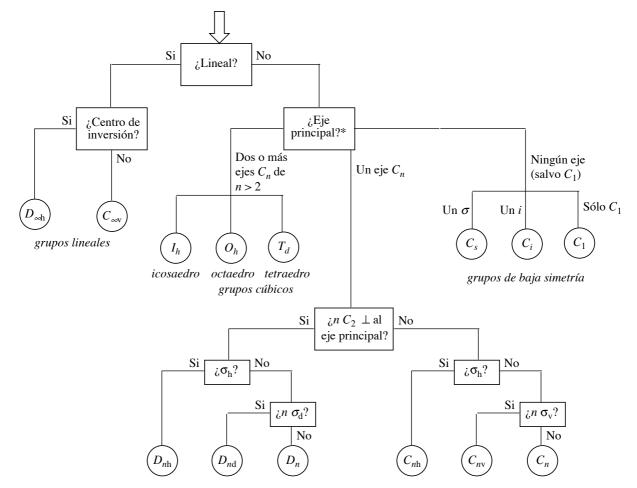
Acabamos de ver que la existencia de uno o varios elementos de simetría puede obligar o impedir la existencia de otros en la misma molécula. Esto significa que sólo son posibles algunos conjuntos de

elementos de simetría. Así, una molécula cuyo eje principal sea C_3 sólo puede poseer uno de los conjuntos de elementos (y operaciones derivadas) listados en la tabla 1.3.

Tabla 1.3. Elementos y operaciones compatibles con un eje principal C ₃									
Elementos de simetría	Operaciones agrupadas por clase	Orden del grupo	Grupo puntual de simetría						
<i>C</i> ₃	$E, 2C_3$	3	C_3						
$C_3, 3C_2$	$E, 2C_3, 3C_2$	6	D_3						
C_3 , $3\sigma_v$	$E, 2C_3, 3\sigma_v$	6	$C_{3\nu}$						
C_3 , σ_h , S_3 *	E , $2C_3$, σ_h , $2S_3$	6	C_{3h}						
$C_3, 3C_2, \sigma_h, S_3^*, 3\sigma_v^*$	$E, 2C_3, 3C_2, \sigma_h, 2S_3, 3\sigma_v$	12	D_{3h}						
$C_3, 3C_2, i, S_6^*, 3\sigma_d^*$	$E, 2C_3, 3C_2, i, 2S_6, 3\sigma_d$	12	D_{3d}						

^{*} Elementos implicados por los anteriores.

Cada uno de estos conjuntos de elementos forma un *grupo puntual de simetría*. Los elementos de simetría que posee una molécula determinan el grupo puntual al que pertenece. Para asignar una molécula a un grupo particular no es preciso listar exhaustivamente todos sus elementos de simetría, sino que basta con buscar aquellos elementos característicos que diferencian un grupo de otro. Esto puede hacerse sistemáticamente siguiendo el esquema de la figura 1.10.



^{*} El eje principal es el de mayor orden.

Figura 1.10. Árbol de decisión para identificar el grupo puntual de una molécula. Los símbolos de cada punto de ramificación se refieren a elementos de simetría (no a operaciones). Este esquema está simplificado y no incluye algunos grupos de simetría poco usuales, tales como S_n , T, T_h , O e I.

1.3 Simetría de orbitales

Caracteres. Nuestro objetivo es usar la simetría para clasificar propiedades de las moléculas (por ejemplo, orbitales atómicos, vibraciones moleculares, etc.). El comportamiento de una propiedad dada

cuando se le aplica una operación determinada se expresa mediante un número llamado *caracter* χ . Así, $\chi = 1$ si la propiedad no cambia, $\chi = -1$ si se invierte, etc. El conjunto de caracteres de una propiedad frente a todas las clases de operaciones de simetría de un grupo define su *comportamiento de simetría* en el grupo (figura 1.11).

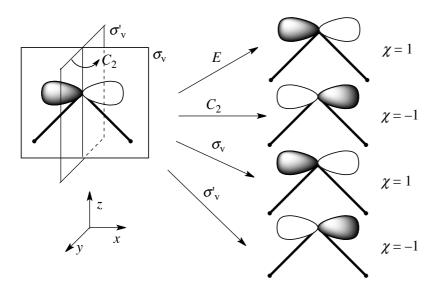
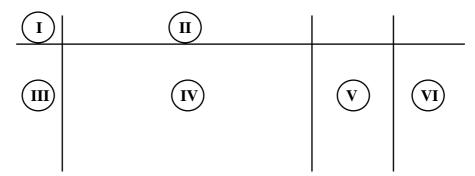


Figura 1.11. Determinación del conjunto de caracteres de un orbital $2p_x$ del átomo de oxígeno en la molécula de agua (grupo de simetría: $C_{2\nu}$). Este conjunto de caracteres (1, -1, 1, -1) corresponde a un comportamiento de tipo b1 en un grupo $C_{2\nu}$ (consultar más adelante la tabla de caracteres del grupo).

Tabla de caracteres. Una tabla de caracteres (ver las tablas de caracteres en el anexo I) sistematiza la información de simetría fundamental de un grupo puntual y, principalmente, los comportamientos de simetría posibles en el mismo:



- I Aquí se muestra el símbolo del grupo puntual considerado.
- II Aquí se listan las operaciones de simetría agrupadas por clases.
- III Esta columna muestra la etiqueta de los comportamientos de simetría del grupo.
- IV Los caracteres γ de cada representación frente a las operaciones de simetría del grupo.
- V-VI Estas columnas muestran funciones que tienen el comportamiento de simetría especificado.

La nomenclatura utilizada para las representaciones irreducibles sigue una cierta sistemática:

- a) La entrada correspondiente a la columna encabezada por la operación identidad E da la degeneración del tipo de simetría. Las etiquetas A y B (Σ en grupos lineales) se asignan a los tipos de simetría no degenerados, E (Π y Δ en grupos lineales) a los doblemente degenerados y T a los triplemente degenerados.
- b) Las etiquetas A tienen un caracter +1 en la columna encabezada por el giro en torno al eje principal, indicando que no cambian. Las etiquetas B tienen un caracter -1 en la columna encabezada por el giro en torno al eje principal, indicando que cambian de signo.
- c) Las etiquetas con comillas sencillas (') no cambian al reflejarse respecto del plano horizontal σ_h , mientras que las etiquetas con comillas dobles ('') cambian de signo. 4 El subíndice g (gerade) indica invarianza con la inversión i, mientras que el subíndice u (ungerade) indica cambio de signo.

Simetría de orbitales y de combinaciones de orbitales. La determinación de la etiqueta de simetría de un orbital no siempre es tan sencillo como se ha ilustrado en la figura 1.9. Por ejemplo, varios orbitales pueden estar degenerados por simetría: en otras palabras, pueden ser equivalentes en la molécula considerada o en cualquier otra que pertenezca al mismo grupo de simetría. Un caso bien conocido es el de los orbitales π_x y π_y en una molécula lineal como el acetileno: son equivalentes entre sí y tienen, por tanto, la misma energía. Estos orbitales no pueden ser tratados individualmente para determinar su comportamiento de simetría.

Sin embargo, la determinación de la etiqueta de simetría de los orbitales de un átomo situado en el centro de la molécula es muy sencilla ya que toda la información necesaria se encuentra en la tabla de caracteres. Por ejemplo, el orbital p_z tiene simetría a_1 en el grupo C_{3v} (es función de z) mientras que los orbitales p_x y p_y están degenerados en el mismo grupo y tienen simetría e.

El tratamiento de orbitales de átomos no situados en el centro de la molécula es en general más complejo ya que no pueden ser considerados aisladamente sino únicamente como *combinaciones lineales adaptadas a la simetría* (CLOAS). La figura 1.12, por ejemplo, muestra el caso del agua (grupo $C_{2\nu}$). La simetría de los cuatro orbitales atómicos del oxígeno se extrae fácilmente de la tabla de caracteres. Los orbitales s del hidrógeno, sin embargo, no pueden considerarse aisladamente sino como una combinación suma (simetría a_1) y una combinación resta (simetría b_1). Los métodos para determinar estas combinaciones están fuera del objeto de este curso, por lo que en el anexo II se suministran las combinaciones más importantes en diferentes grupos de simetría.

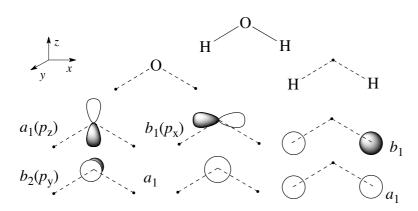


Figura 1.12. Molécula de agua. Orbitales de valencia 2s y 2p del oxígeno y combinaciones, adaptadas a la simetría, de los orbitales 1s de los hidrógenos. Las etiquetas de simetría de los orbitales y combinaciones se pueden comprobar operando según se ha indicado en la figura 1.8. En el caso de los orbitales 2p del oxígeno, también se pueden comprobar buscando en la tabla de caracteres las etiquetas correspondientes a las coordenadas x, y, z.

Bibliografía

Shriver (2ª edición), págs. 118 a 136; Shriver (4ª edición), capítulo 7; Housecroft (2ª edición), págs. 79 a 90.

Bibliografía complementaria

[1] F. A. Cotton, "La teoría de grupos aplicada a la química", Ed. Limusa, México, **1977**, 452 páginas traducción de la 2ª edición en inglés; [2] D. J. Willock, *Molecular Simmetry*, Wiley, **2009**, 415 páginas.

Seminarios

- 1.1 ¿Cuáles de las siguientes moléculas tiene a) un centro de inversión, b) un eje S_4 ?: CO_2 , C_2H_2 , BF_3 , SO_4^{2-} .
- 1.2 Determine las operaciones de simetría y asigna el grupo puntual de: a) NH₂Cl, b) CO₃²⁻, c) SiF₄, d) HCN, e) BrF₄⁻.
- 1.3 Dibuje la estructura y determina el grupo puntual de las siguientes moléculas: a) BeCl₂, b) BF₃, c) CH₄, d) PCl₅, e) SF₆, f) SnCl₂, g) NH₃, h) H₂O, i) SF₄, j) ClF₃, k) I₃⁻, l) BrF₅, m) XeF₄, n) CO₂, p) SF₄O, q) XeF₂O₂, r) CHCl₃, s) SF₅Cl.

- 1.4 Prediga las estructuras moleculares de los siguientes derivados de xenón e indique el grupo puntual de simetría al que pertenecen:
 - a) XeO₃, b) XeO₄, c) XeO₆⁴, d) XeF₂, e) XeF₄, f) XeOF₂, g) XeOF₄, h) XeO₂F₂, i) XeO₂F₄, j) XeO₃F₂.
- 1.5 Determine los elementos de simetría de la molécula de BF₃ y deduzca los que se pierden al pasar de (a) BF₃ a BClF₂ y (b) BClF₂ a BBrClF.
- 1.6 Utilizando la información suministrada por la tabla de caracteres, determine las etiquetas de simetría en el grupo adecuado para los orbitales de valencia del átomo de níquel en los siguientes compuestos:
 - a) [NiCl₄]²⁻ (tetraédrico), b) [Ni(CN)₄]²⁻ (plano-cuadrado), c) [Ni(NCS)₆]⁴⁻ (octaédrico), d) [Ni(CN)₅]³⁻ (pirámide de base cuadrada), e) [Ni(CN)₅]³⁻ (bipirámide trigonal).
- 1.7 La molécula MX₄ tiene una estructura de pirámide de base cuadrada. Una de las cuatro combinaciones lineales adaptadas a la simetría de los cuatro orbitales p_z de X tiene simetría b_1 . Intente dibujar dicha combinación teniendo en cuenta el comportamiento que debe tener frente a las operaciones de simetría del grupo una combinación b_1 .
- 1.8 Una molécula es quiral si no posee un eje de rotación impropia. Utilice la teoría de grupos para determinar cuál de las siguientes moléculas es quiral:
 - a) NHF₂, b) H_2O_2 (ver figura), c) $[Co(C_2O_4)_3]^{3-}$ (ver figura).

$$\begin{bmatrix}
0 & & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 & & & \\
0 &$$

Recuérdese que un plano de simetría es un eje S_1 y que un centro de inversión equivale a un eje S_2 . Las moléculas que no tienen ni planos de simetría ni centro de inversión (ejes S_1 y S_2) son normalmente quirales, pero es importante verificar que no exista un eje impropio de orden superior.

Soluciones a los ejercicios

- 1.1 a) CO₂, C₂H₂,; b) CO₂, C₂H₂, SO₄²⁻.
- 1.2 a) C_s , b) D_{3h} , c) T_d , d) $C_{\infty v}$, e) D_{4h} (ver la tabla de caracteres del grupo correspondiente para comprobar las operaciones de simetría).
- 1.3 a) $D_{\infty h}$, b) D_{3h} , c) T_d , d) D_{3h} , e) O_h , f) $C_{2\nu}$, g) $C_{3\nu}$, h) $C_{2\nu}$, i) $C_{2\nu}$, j) $C_{2\nu}$, k) $D_{\infty h}$, l) $C_{4\nu}$, m) D_{4h} , n) $D_{\infty h}$, o) D_{2h} , p) $C_{2\nu}$, q) $C_{2\nu}$, r) $C_{3\nu}$, s) $C_{4\nu}$.

a) Cl-Be-Cl e) F h)
$$\bigcirc$$
 k) \bigcirc Cl-Be-Cl e) F h) \bigcirc Cl \bigcirc F h \bigcirc Cl \bigcirc Cl \bigcirc F h \bigcirc Cl \bigcirc Cl \bigcirc F h \bigcirc Cl \bigcirc

- 1.4 a) pirámide de base trigonal, $C_{3\nu}$; b) tetraédrica, T_d ; c) octaédrica, O_h ; c) octaédrica, O_h ; d) lineal, $D_{\infty h}$; e) plano-cuadrada, D_{4h} ; f) forma de T, $C_{2\nu}$; g) forma de balancín, $C_{2\nu}$; h) pirámide de base cuadrada, $C_{4\nu}$; i) octaédrica, D_{4h} ; j) bipirámide trigonal, D_{3h} .
- 1.5 Grupo (elementos): D_{3h} (C_3 , 3 C_2 perpendiculares a C_3 , S_3 , σ_h , 3 σ_v); C_{2v} (C_2 , $\sigma_v(xz)$, $\sigma_v(yz)$); C_s (σ).
- 1.6 Grupo (etiquetas 3d, 4s, 4p): a) T_d ($t_2 + e$, a_1 , t_2); b) D_{4h} ($b_{2g} + e_g + b_{1g} + a_{1g}$, a_{1g} , $e_u + a_{2u}$); c) O_h ($t_{2g} + e_g$, a_{1g} , t_{1u}); d) C_{4v} ($a_1 + b_1 + b_2 + e$, a_1 , $a_1 + e$); e) D_{3h} (a_1 ' + e' + e", a_1 ', e' + a_2 ").

1.7 Grupo de simetría: $C_{4\nu}$. En dicho grupo, la combinación debe invertir su signo al girar 90° en torno al eje principal C_4 . Por tanto, la combinación debe ser:

1.8 Son quirales la b y c (no tienen ningún eje impropio, incluyendo plano o centro de simetría).

Anexo 1: Tablas de caracteres

A1.1 Grupos no axiales

$$\begin{array}{c|c}
C_1 & E \\
\hline
A & 1
\end{array}$$

A1.2 Grupos C_{nv}

C_{4v}	E	$2C_{4}$	C_2	$2\sigma_v$	$2\sigma_d$		
$\overline{A_1}$	1	1	1	1	1	Z	x^2+y^2 , z^2
A_2	1	1	1	-1	-1	R_z	
B_1	1	-1	1	1	-1		$x^2 - y^2$
B_2	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x,y)(R_x,R_y)$	(xz, yz)

A1.3 Grupos D_{nh}

D_{3h}	E	2 <i>C</i> ₃	$3C_2$	σ_h	$2S_3$	$3\sigma_v$		
$\overline{A_1}$	1	1						x^2+y^2, z^2
A_2	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2, xy)
A_1 "		1	1	-1	-1	-1		
A_2 "	1	1	-1	-1	-1	1	Z	
E "	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

D_{4h}	E	2 <i>C</i> ₄	C_2	$2C_2$	2 <i>C</i> ₂ "	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R_z	
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1		$x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_g	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Z	
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

A1.4 Grupos cúbicos

O_h	E	$8C_3$	$6C_2$	6 <i>C</i> ₄	$3C_2(=C_4^2)$	i	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_d$		
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1		$x^2+y^2+z^2$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_z, R_x, R_y)	• ,
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_u	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

T_d	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$		
$\overline{A_1}$	1	1	1	1	1		$x^2+y^2+z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1		(x, y, z)	(xy, xz, yz)

A1.5 Grupos $C_{\text{\tiny ov}}$ y $D_{\text{\tiny oh}}$ para moléculas lineales

$C_{\infty v}$	E	$2C_{\infty}^{\Phi}$		$\infty \sigma_{v}$		
$A_1 \equiv \Sigma^+$	1	1	•••	1	z	x^2+y^2 , z^2
$A_2 \equiv \Sigma^-$	1	1		-1	R_z	
$E_1 \equiv \Pi$	2	$2\cos\Phi$	•••	0	$(x, y)(R_x, R_y)$	(xz, yz)
$E_2 \equiv \Delta$	2	$2\cos 2\Phi$		0		(x^2-y^2, xy)
$E_3 \equiv \Phi$	2	$2\cos 3\Phi$	•••	0		
		•••				

$D_{\infty h}$	E	$2C_{\infty}^{\Phi}$		$\infty \sigma_{v}$	i	$2S_{\infty}^{\Phi}$		∞C_2		
Σ_g^+	1	1		1	1	1		1		x^2+y^2, z^2
$\Sigma_g{}^-$	1	1		-1	1	1		-1	R_z	
Π_g	2	$2\cos\Phi$				$-2\cos\Phi$		0	(R_x, R_y)	(xz, yz)
Δ_g	2	$2\cos 2\Phi$		0	2	$2\cos 2\Phi$		0		(x^2-y^2, xy)
	•••	•••	•••	•••	•••	•••	•••	•••		
Σ_u^+	1	1		1	-1	-1		-1	Z	
Σ_u^-	1	1		-1	-1	-1		1		
Π_u	2	$2\cos\Phi$		0	-2	$2\cos\Phi$		0	(x, y)	
Δ_u	2	$2\cos 2\Phi$		0	-2	$-2\cos 2\Phi$		0		
•••			•••	•••	•••		•••			

Anexo 2: Orbitales adaptados a la simetría

