Parte I Normalidad en sistemas redox:

A: Calculo de la relación Molar : Normal en reacciones redox

(Ojo: para poder asignar la normalidad debes conocer el número de electrones intercambiados!)

1.- Considerando la siguiente reacción Química: 2FeCl₂ + SnCl₄ → 2FeCl₃ + SnCl₂

¿Cuál es la normalidad de una disolución 0.1M de FeCl₂?

R: Como cada
$$Fe^{2+}$$
 se oxida a Fe^{3+} : $\frac{0.1 \text{ mol } Fe^{2+}}{1 \text{L}} \times \frac{2 \text{ eq.}}{2 \text{mol } Fe^{2+}} = \frac{0.1 \text{ eq}}{1 \text{L}} = 0.1 \text{ N}$

¿Cuál es la normalidad de una disolución 0.1M de SnCl₄?

R: Como cada Sn⁴⁺ se reduce a Sn²⁺:
$$\frac{0.1 \text{ mol Sn}^{4+}}{1 \text{ II}} \times \frac{2 \text{ eq.}}{1 \text{ mol Sn}^{4+}} = \frac{0.2 \text{ eq.}}{1 \text{ II}} = 0.2 \text{ N}$$

2.- Considerando la siguiente reacción Química: 1₂ + H2O2 → 2 HI + O2

¿Cuál es la normalidad de una disolución 0.2M de I₂?

R: Como cada
$$I_2$$
 se reduce a $2I^-$: $\frac{0.2 \text{ mol}}{1\text{L}} \times \frac{2 \text{ eq.}}{1 \text{ mol } I_2} = \frac{0.4 \text{ eq}}{1\text{L}} = 0.4 \text{ N}$ (cada I consume $1e^- \rightarrow I^-$)

¿Cuál es la normalidad de una disolución 0.2M de H₂O₂?

R: Como cada
$$H_2O_2$$
 produce 2e- (generando O_2):
$$\frac{0.2 \text{ mol}}{1 \text{L}} \times \frac{2 \text{ eq.}}{1 \text{ mol } H_2O_2} = \frac{0.4 \text{ eq}}{1 \text{L}} = 0.4 \text{ N}$$
 (cada O^- produce 1e- \rightarrow O^0)

3.- Considerando la siguiente reacción Química: 2KMnO₄ + 16HCl → 2MnCl₂ + 5Cl₂ + 2KCl + 8H₂O
¿Cuál es la normalidad de una disolución 0.1M de KMnO₄ ?

R: Como cada MnO₄ se reduce a Mn²⁺:
$$\frac{0.1 \text{ mol MnO}_4}{1 \text{L}} \times \frac{10 \text{ eq.}}{2 \text{mol MnO}_4} = \frac{0.5 \text{ eq}}{1 \text{L}} = 0.5 \text{ N}$$

¿Cuál es la normalidad de una disolución 0.1M de HCl?

R: Como 16HCl producen 10 e-:
$$\frac{0.1 \text{ mol HCl}}{1 \text{L}} \times \frac{10 \text{ eq.}}{16 \text{ mol HCl}} = \frac{0.0625 \text{ eq}}{1 \text{L}} = 0.0625 \text{ N}$$

Uso de la normalidad en reacciones redox:

Como sabes, si cuentas con 100 mL de oxidante 0.1N y el reductor tiene una concentración 0.05N entonces requerirás 200 mL de esta última sustancia para levar a cabo la reacción (sin saber quién es el oxidante ni el reductor !!):

$$100 \text{ mL x } \frac{0.1 \text{ e}q_{(oxidante)}}{1000 \text{ mL}} \text{ x } \frac{1 \text{ eq. de reductor}}{1 \text{ eq. de oxidante}} \text{ x } \frac{1000 \text{ mL}}{0.05 \text{ e}q_{(reductor)}} = 200 \text{mL}$$
 (A)

Podemos corroborar lo anterior usando la siguiente reacción:

$$K_2Cr_2O_7 + 3MnCl_2 + 2HCl \rightarrow 3MnO_2 + 2CrCl_3 + H_2O + 2KCl$$

Como 1 mol de K₂Cr₂O₇ intercambia 6 equivalentes y 3 mol MnCl₂ también intercambian 6 equivalentes: (usando 200mL de oxidante 0.1N y reductor 0.2N):

$$100 \text{ mL x } \frac{0.1 \text{ e}q_{(oxidante)}}{1000 \text{ mL}} \text{ x } \frac{1 \text{ mol K2Cr207}}{6 \text{ eq. de oxidante}} \text{ x } \frac{3 \text{ MnCl2}}{1 \text{mol K2Cr207}} x \frac{6 \text{ e}q.(reductor)}{3 \text{ mol MnCl2}} x \text{ } \frac{1000 \text{ mL}}{0.05 \text{ e}q_{(reductor)}} = 200 \text{mL}$$

B: Ahora Corrobora la ecuación anterior empleando como ejemplo las reacciones 1, 2, 3 de la parte A. (debes emplear los equivalentes que se intercambian en cada reacción pues cada una es distinta, aunque en todos los casos debes obtener 200 mL de reductor 0.05N!) Suerte!!

R: Empleando la ecuación 1

$$100 \text{ mL x } \frac{0.1 \text{ e}q_{(oxidante)}}{1000 \text{ mL}} \text{ x } \frac{1 \text{ mol SnCl4}}{2 \text{ eq. de oxidante}} \text{ x } \frac{2 \text{ mol FeCl2}}{1 \text{mol SnCl4}} x \frac{2 \text{ eq.(reductor)}}{2 \text{ mol FeCl2}} x \frac{1000 \text{ mL}}{0.05 \text{ e}q_{(reductor)}} = 200 \text{mL}$$

R: Empleando la ecuación 2

$$100 \text{ mL x } \frac{0.1 \text{ eq}_{(oxidante)}}{1000 \text{ mL}} \text{ x } \frac{1 \text{ mol } \textit{I}_2}{2 \text{ eq. de oxidante}} \text{ x } \frac{1 \text{ mol } \textit{H}_2\textit{O}_2}{1 \text{ mol } \textit{I}_2} x \frac{2 \text{ eq. (reductor)}}{1 \text{ mol } \textit{H}_2\textit{O}_2} x \text{ } \frac{1000 \text{ mL}}{0.05 \text{ eq}_{(reductor)}} = 200 \text{mL}$$

R: Empleando la ecuación 3

$$100 \text{ mL x } \frac{0.1 \text{ e}q_{(oxidante)}}{1000 \text{ mL}} \text{ x } \frac{2 \text{ mol } \frac{KMnO_4}{10 \text{ eq. de oxidante}}}{10 \text{ eq. de oxidante}} \text{ x } \frac{16 \text{ mol } \text{ HCl}}{2 \text{ mol } \frac{KMnO_4}{4}} \text{ x } \frac{10 \text{ e}q.(reductor)}{16 \text{ mol } \text{ HCl}} \text{ x } \frac{1000 \text{ mL}}{0.05 \text{ e}q_{(reductor)}} = 200 \text{ mL}$$

Parte II Titulaciones:

Para la siguiente reacción, completa cada una de las siguientes tablas con la información faltante

 $2H_3PO_4 + 3Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 6H_2O$ $H_3PO_4 : 98 g/mol, Ca(OH)_2 : 74 g/mol$

Respuestas:

a) 7.5 L

b) 11.25 L

c) 0.08 N

d) 0.22 M

e) 0.031 N

f) 0.013 N

g) 3.39 g

h) 229.6 mL

• 1	0 27	
-	1 ().37	- 0
•	, 0.07	-

j) 272 g

k) 30.22 g

l) 10% (m/m)

m) 70.54 g

n) 459.1 mL

o) 4.35 % (m/v)

p) 283.1 mL

	Ácido	Base
a)	Ca = 0.5 N	Cb= 0.01 N
aj	Va = 150 mL	Vb =

	Ácido	Base
h۱	Ca = 0.5 M	Cb= 0.01 M
b)	Va = 150 mL	Vb =

	Ácido	Base
c)	Ca = N	Cb= 0.1 N
()	Va = 75 mL	Vb = 60 mL

	Ácido	Base
۵۱	Ca = 0.2 M	Cb=M
d)	Va = 55 mL	Vb =75 mL

	Ácido	Base
٥١	Ca = 0.05 M	Cb =N
e)	Va = 15.5 mL	Vb = 75 mL

	Ácido	Base
;\	Ca= 0.02 N	Cb = 15 % (m/m)
')	Va = 75 mL	b=g

	Ácido	Base
:\	Ca= 0.5 m	Cb =0. 2m
J)	a = 75 g _(mezcla)	b =g (mezcla)

	Ácido	Base
k)	Ca= 0.03 N	Cb = 0.1 m
K)	Va = 200 mL	B=g

	Ácido	Base
	Ca= % (m/m)	Cb = 0.5 N
1)	a = 16.3g	Vb = 100 mL

m)	Ca = 0.5 m	Cb = 15% (m/m)
111)	a = 200g	b =g

	Ácido	Base
t/	Ca =N	Cb = 1 x 10 ⁻³ M
1)	Va = 23 mL	Vb =150 mL

	Ácido	Base
g)	Ca = 5% (m/m)	Cb =25 %(m/m)
	a = 15 g	b = g

	Ácido	Base
b)	Ca = 25% (m/m)	Cb = 0.5 M
h)	a = 30g	Vb = mL

n)	Ca = 12% (m/v)	Cb = 2 N
	Va = 250 mL	Vb=

	Ácido	Base
0)	Ca = 5% (m/v)	Cb =%(m/v)
	Va = 150 mL	b = 195 mL

	Ácido	Base
p)	Ca = 5% (m/m)	Cb = 5% (m/v)
	a = 250 g	Vb = mL