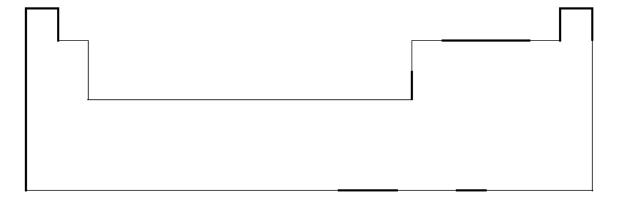
Tarea 3. Interacciones químicas y propiedades periódicas

Química Inorgánica I


Paulino Guillermo Zerón Espinosa | Miroslava Arronte Morales

Contesta las siguientes preguntas.

1. Propiedades periódicas.

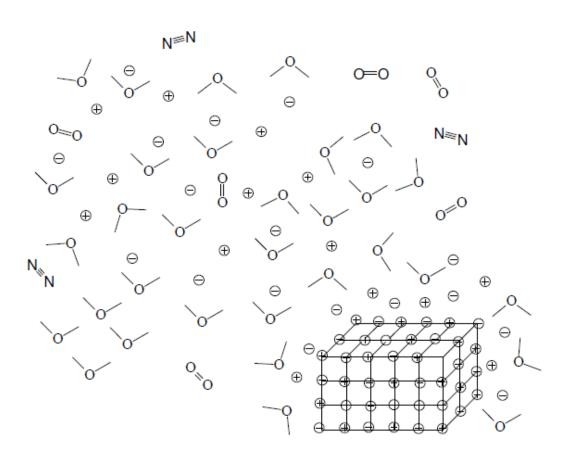
- 1.1. Propón 2 compuestos iónicos y dos compuestos covalentes que tengan la forma AB₂. Donde A y B son elementos de la tabla periódica diferentes.
- 1.2. Dibuja un vector sobre la silueta de la tabla periódica en sentido y dirección creciente al comportamiento de las siguientes propiedades periódicas (Utiliza un color diferente para cada propiedad):

Electronegatividad Radio atómico Afinidad Electrónica Energía de Ionización Carga nuclear efectiva

Nota: Para la electronegatividad, ignora a los metales de transición

2. Momento dipolar

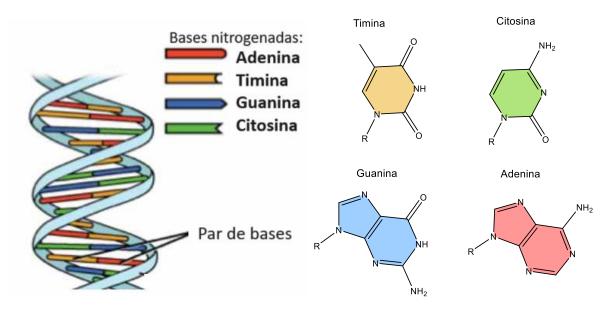
2.1. Dibuja el vector de momento dipolar de las siguientes moléculas. Encierra en un círculo aquellas que NO presentan momento dipolar.


2.2. En la molécula que a continuación se presenta, enumera los hidrógenos que son susceptibles a presentar puente de hidrógeno, adicionalmente circula los átomos electronegativos que podrían formar puente de hidrógeno con un "H" adecuado de otra molécula.

3. Interacciones químicas

- 1.1. En la siguiente imagen señala (marcando con un círculo) las siguientes interacciones:
 - a) iónica
 - b) covalente
 - c) ion-dipolo
 - d) dipolo-dipolo

- e) ion-dipolo inducido
- f) dipolo-dipolo inducido
- g) dipolo instantáneo-dipolo


inducido.

- 1.2. Ordene de menor a mayor fuerza de interacción de las siguientes moléculas: a) hexano, b) mezcla de agua y metanol, c) disolución de bromo en agua, d) disolución de sal de mesa en agua.
- 1.3. ¿Qué tipo de fuerza intermolecular debe vencerse para que cada una de las siguientes sustancias se transforme de líquido a gas?
- a) O₂

- b) Mercurio
- c) CH₃I
- d) Etanol

1.4. La comprensión de la estructura del ADN ha sido clave para comprender gran parte de la bioquímica molecular. Hasta donde sabemos las hebras helicoidales del ADN se deben a cuatro moléculas: timina (T), guanina (G), citosina (C) y adenina (A). Sabiendo que la adenina sólo puede interactuar con la timina y la citosina solo puede interactuar con la guanina, explique qué tipo de interacción existe entre las moléculas ya mencionadas y dibuje dichas interacciones.

1.5. El éter dietílico (CH₃CH₂OCH₂CH₃) tiene un punto de ebullición de 34.5°C y el 1-butanol (CH₃CH₂CH₂CH₂OH) tiene un punto de ebullición de 117°C. Si los dos compuestos tienen el mismo tipo y número de átomos ¿Por qué tienen diferentes puntos de ebullición?