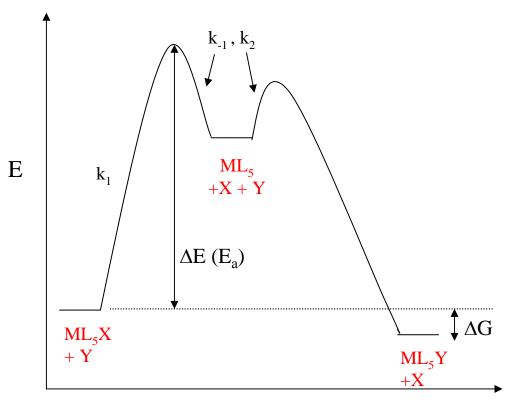

"Complexes that undergo complete ligand exchange within 1 minute at 25 °C are labile."

Which dⁿ configuration should provide inert octahedral complexes?

Table 11.1 Change in LFSE (units Dq)^a upon changing a 6-coordinate complex to a 5-coordinate (square pyramidal) or a 7-coordinate (pentagonal bipyramidal) species

	High spin		Low spin	
System	C.N. = 5	C.N. = 7	C.N. = 5	C.N. = 7
d^0	0	0	0	0
d^1	+0.57	+1.28	+0.57	+1.28
d^2	+1.14	+2.56	+1.14	2.56
d^3	-2:00	- 4.26.	- 2.00	-4.26
d^4	+3.14	-1.07	-1.43	-2.98
d^5	0	O	-0.86	-1.7 0
d^6	+0.57	+1.28	-4.00	-8.52
d^7	+1.14	+2.56	+1.14	- 5.34
d^8	-2.00	-4.26	-2.00	-4.26
d^9	+3.14	- 1.07	+3.14	-1.07
d^{10}	0	0	0	0


[&]quot;The common convention is used: Negative quantities refer to loss of LFSE and destabilization of the complex.

Inert Complexes d³ & d⁸, low spin d⁴-d⁶

SOURCE: Modified from F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," 2nd ed., Wiley, New York, 1967. Used with permission.

Limiting Reaction Mechanisms for Ligand Substitution Reactions

D = Dissociative $\sim S_N 1$ From C.N. = 6 to C.N. =5

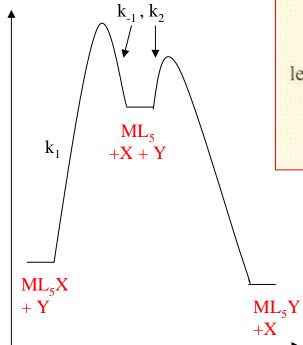
$$ML_5X \stackrel{k_1}{\rightleftharpoons} ML_5 + X$$

$$ML_5 + Y \xrightarrow{k_2} ML_5Y$$

$$k_1 << k_{-1} < k_2$$

Reaction coordinate

What are the kinetics of reactions proceeding via the **D** mechanism?


Kinetics of reactions proceeding via the **D** mechanism

$$ML_5X \stackrel{k_1}{\rightleftharpoons} ML_5 + X$$

$$ML_5 + Y \xrightarrow{k_2} ML_5Y$$

$$k_1 << k_{-1} < k_2$$

Reaction Profile

$$\frac{d[ML_5]}{dt} = k_1[ML_5X] - k_{-1}[ML_5][X] - k_2[ML_5][Y] = 0$$

Solving for [ML₅],

$$[ML_5] = \frac{k_1[ML_5X]}{k_{-1}[X] + k_2[Y]}$$

and substituting into the rate law for formation of the product,

$$\frac{d[ML_5Y]}{dt} = k_2[ML_5][Y]$$

leads to the rate law:

$$\frac{d[ML_5Y]}{dt} = \frac{k_2k_1[ML_5X][Y]}{k_{-1}[X] + k_2[Y]}$$

But: $k_{-1}[X] \ll k_2[Y]$, because $k_{-1} \ll k_2$ and (usually) [X] \ll [Y].

This leads to: $d[ML_5Y]/dt = k_1[ML_5X]$

The reaction is 1st order in substrate and hence, the rate of substitution should be independent of Y.

A simple case of a reaction proceeding via the **D** mechanism

Rate Constants for Substitution Reactions of [Ni(H₂0)₆]²⁺

$$[Ni(H2O)6]2+ + L \xrightarrow{k} [Ni(H2O)5L]n+ + H2O$$

L	k, s ⁻¹	$\log k$	
F ⁻	8×10^{3}	3.9	
SCN-	6×10^{3}	3.8	
CH ₃ COO ⁻	30×10^{3}	4.3	
NH ₃	3×10^{3}	3.5	
H ₂ O	25×10^{3}	4.4	

Source: Data from R. G. Wilkins, Acc. Chem. Res. 3 (1970): 408.

The rate is **independent** on the identity of L, the **entering ligand**

Another case of a reaction proceeding via the **D** mechanism

$$[Co(NH_3)_5L]^{2+} + H_2O \xrightarrow{k} [Co(NH_3)_5(H_2O)]^{3+} + L^-$$

$$L \qquad k, s^{-1} \qquad K_a, M^{-1}$$

Slowest rate of NCS⁻ 5.0×10^{-10} 470 $M-L$ bonds reaction $F^ 8.6 \times 10^{-8}$ 20 $M-L$ bonds $M-L$ bonds

The rate is **dependent** on the identity of L, the **leaving ligand**

Kinetics of the two limiting reaction mechanisms for Ligand Substitution Reactions in octahedral complexes (r = dP/dt)

Dissociative (D)

$$ML_{5}X \xrightarrow{k_{1}} ML_{5} + X$$

$$\downarrow +Y \qquad k_{2}$$

$$fast \qquad ML_{5}Y$$

$$r = k_{1}[ML_{5}X]$$

Associative (A)

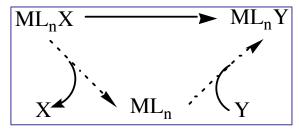
A reaction proceeding via the A mechanism

a. Rate constants for [Ru(III)(EDTA)(H₂O)]⁻ substitution

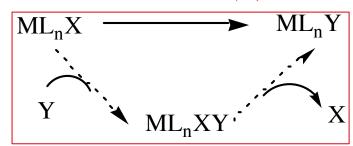
Ligand	$k_{I}(M^{-1} s^{-1})$	$\Delta H^{\ddagger}(kJ\ mol^{-1})$	$\Delta S^{\ddagger}(J \ mol^{-1} \ K^{-1})$
Pyrazine	$20,000 \pm 1,000$	5.7 ± 0.5	-20 ± 3
Isonicotinamide	$8,300 \pm 600$	6.6 ± 0.5	-19 ± 3
Pyridine	$6,300 \pm 500$		
Imidazole	$1,860 \pm 100$		
SCN-	270 ± 20	8.9 ± 0.5	-18 ± 3
CH ₃ CN	30 ± 7	8.3 ± 0.5	-24 ± 4

b. Rate constants for [Ru(II)(EDTA)(H₂O)]²⁻ substitution

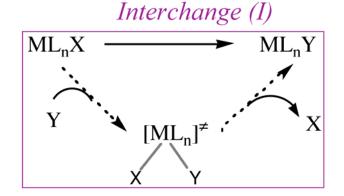
Ligand	$k_I(M^{-1} s^{-1})$	
Isonicotinamide	30 ± 15	2000 2000
CH ₃ CN	13 ± 1	
CH ₃ CN SCN ⁻	2.7 ± 0.2	


The identity of **entering ligand** influences the **rate** very much

 $\Delta S^{\#}$ is negative, consistent with expectation for 2 molecules forming 1 new complex


Summary of of ligand substitution (exchange) reaction mechanisms in octahedral complexes

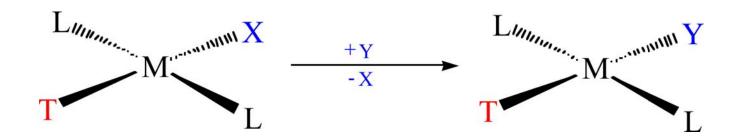
$$ML_nX + Y \longrightarrow ML_nY + X$$



Associative (A)

 $\mathbf{I_d}$ if dissociation is more important

I_a if association is more important

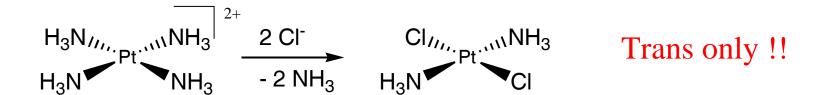

Y assists the leaving ligand (X)

Dissociative Interchange (I_D)

Y strongly begins bond formation before X leaves

Associative Interchange (I_A)

Substitution reactions in square-planar complexes and the trans effect



Trans effect: The ability of a ligand (T) to labilize a ligand trans to it (X) T = a trans-directing ligand

The trans effect series

$$CO \sim CN^- \sim C_2H_4 > PR_3 \sim H^- > CH_3^- \sim SC(NH_2)_2 > C_6H_5^- >$$
 $NO_2^- \sim SCN^- \sim I^- > Br^- > CI^- > py, NH_3 \sim OH^- \sim H_2O$

Synthetically useful consequences of the trans effect

Synthetically useful consequences of the trans effect

The trans effect series

$$CO \sim CN^- \sim C_2H_4 > PR_3 \sim H^- > CH_3^- \sim SC(NH_2)_2 > C_6H_5^- >$$
 $NO_2^- \sim SCN^- \sim I^- > Br^- > CI > py, NH_3 \sim OH^- \sim H_2O$

The trans effect series

$$CN^-$$
, CO) NO, $C_2H_4 > PR_3$, $H^- > CH_3^-$, $C_6H_5^-$, $SC(NH_2)_2$, $SR_2 > SO_3H^- > NO_2^-$ (1), $SCN^- > Br^- > Cl^- > py > RNH_2$, $NH_3 > OH^- > H_2O$

and the spectrochemical series

$$(I^{-}) < Br^{-} < S^{-2} < SCN^{-} < CI^{-} < NO_{3}^{-} < F^{-} < OH^{-}) < ox^{-2} < H_{2}O < NCS^{-}$$
 $< CH_{3}CN < NH_{3} < en < bipy < phen < NO_{2}^{-} < phosph < CN^{-} < CO$

Task 1

Note similarities and differences between the two series

Task 2

Let's try understanding the trans effect by taking a closer look at a conceivable reaction mechanism

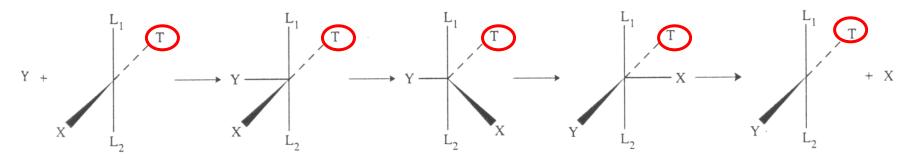


Fig. 13.2 Mechanism for nucleophilic substitution in square planar ML₁L₂XT complexes.

Note 1: the energies of square pyramidal and trigonal bipyramidal complexes are very similar and they interconvert very fast.

Note 2: π - accepting ligands prefer equatorial positions in trigonal bipyramidal complexes

Task 2

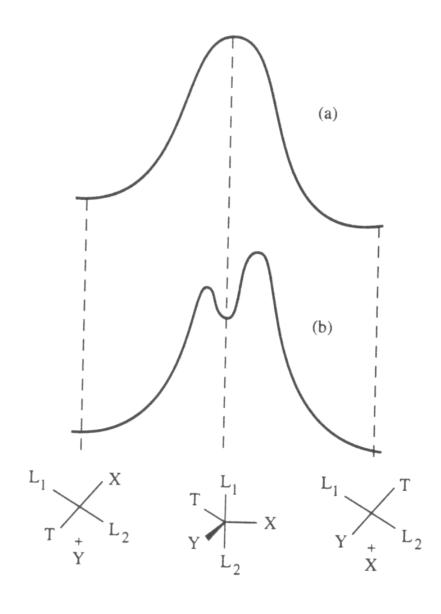


Fig. 13.3 Reaction coordinate/energy profile for a square planar substitution reaction having (a) a trigonal bipyramidal activated complex and (b) a trigonal bipyramidal intermediate. [From Burdett, J. K. *Inorg. Chem.* 1977, 16, 3013-3025. Used with permission.]

Note: The barrier for tbp to spy is very small

Task 1 + Task 2

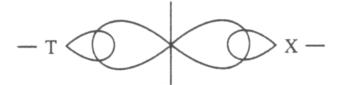


Fig. 13.4 Competition of trans ligand (T) and leaving group (X) for a metal p_x orbital in a square planar complex.

 σ - donation by T weakens the M-X bond, hence σ - donor strength:

$$H^- > PR_3 > SCN^- > I^-, CH_3^-, CO, CN^- > Br^- > CI^- > NH_3 > OH^-$$

 π - acceptors prefer equatorial positions in bpy complexes, hence

 π - acceptor series:

$$C_2H_2$$
, $CO > CN^- > NO_2^- > SCN^- > I^- > Br^- > Cl^- > NH_3 > OH^-$

Conclusion

Both σ - donors and π -acceptors are expected to be strong *trans*-directing ligands

 CN^- , CO, NO, $C_2H_4 > PR_3$, $H^- > CH_3^-$, $C_6H_5^-$, $SC(NH_2)_2$, $SR_2 > SO_3H^- > NO_2^-$, I^- , $SCN^- > Br^- > CI^- > py > RNH_2$, $NH_3 > OH^- > H_2O$

Both σ - donors and π -acceptors are expected to be strong *trans*-directing ligands Important notes:

- a) Information about σ -donation is obtained from isolated complexes.
- b) Information about π -acceptance is obtained from isolated complexes.
- c) Information about preferred occupation in tbp complexes is obtained from isolated complexes.
- d) <u>Conclusion</u>: Information for a-c is acquired from thermodynamic data.

But, information regarding *trans*-directing ligands is obtained from kinetic data. Remember that the transeffect is defined as "The ability of a ligand (T) to labilize a ligand trans to it (X)"

Conclusion:

- a) All information acquired about the effect of ligands on thermodynamic properties of other ligands trans to them is called the *trans*-influence.
- b) Information acquired about the effect of ligands on kinetic properties of ligands trans to them is called the *trans*-effect.