Polímeros de Silicio: Síntesis de Boligoma

Problema

¿Cómo influye la variación de la proporción de óxido de boro en las propiedades físicas del polímero sintetizado?

¿Cuál fue la proporción óptima de B₂O₃ para esta síntesis?

Material:

1 Dewar y Trampa para Línea de vacío (por grupo)

1 Adaptador con llave (con junta igual a matraces bola pequeños o incluir

reducción para junta macho 24 y hembra 14)

Matraces bola: 2 de 100/50 y 1 de 250 mL (24/40)

Vaso de pp: 2 de 100 y 1 de 500 mL

Embudo de separación Barra de agitación magnética

Soporte

Parrilla de agitación magnética Probeta graduada (30 mL) Pipeta graduada (10 mL)

Kitasato de 100 mL

Equipo de destilación Quickfit ó Rotavapor Recristalizador para baño de aceite /arena

Papel pH

Termómetro (400°C) Nave para pesar Refrigerante (24/40) 2 Mangueras de látex Pinzas de tres dedos

Varilla de vidrio

Propipeta

Grasa para las juntas Embudo Buchner

Espátula

Línea de Vacío

Papel filtro

Reactivos:

Óxido de Boro Sulfato de magnesio anhidro

Diclorodimetilsilano (Me₂SiCl₂) éter etílico Disolución al 10% de bicarbonato de sodio (1/2 L) Agua destilada

Arena o Baño de aceite

Desarrollo Experimental:

Todo el experimento debe llevarse a cabo en la campana:

a) Hidrólisis: En un matraz bola de 250 mL que contiene una barra de agitación magnética se colocan 15 mL de Me₂SiCl₂. Coloque un refrigerante al matraz y adicione 30 mL de éter etílico mientras agita la mezcla. Después adicione 30 mL de agua gota a gota (la reacción procede vigorosamente si la adición del agua es rápida). Cuando el burbujeo de la reacción cese, quite el refrigerante, separe la capa acuosa y determine su pH, puede descartar esta fase acuosa al pasar el contenido a un embudo de separación. Adicione lentamente a la fracción de éter una disolución de bicarbonato de sodio al 10% para lavar (15 mL). Descarte la fase acuosa como lo hizo en el paso anterior, mida el pH y continúe con la neutralización hasta que la fase acuosa ya no esté ácida. Para finalizar agregue agua, separe y descarte la fase acuosa. Trasfiera su fase orgánica a un vaso de precipitados y seque la fase de éter con sulfato de magnesio anhidro. Decante la disolución de éter, filtre cualquier sobrante de sulfato de magnesio y vacíe en un matraz bola de 100 o 50 mL con una barra de agitación previamente pesados. Destile el éter utilizando un baño de agua en un rotavapor o con un equipo de destilación. Al finalizar coloque el adaptador con llave al matraz

y llévelo a la línea de vacío para eliminar las últimas trazas de éter y agua. Pese para calcular el rendimiento.

b) Intercalación: Coloque el producto en un vaso de precipitados y agregue B₂O₃ (7%, 5% y 3% del peso del producto, según se le indique) mientras agita constantemente con una varilla de vidrio y calienta a 200°C usando un baño de arena o aceite. El producto comenzará a adquirir el aspecto de una masilla en aprox. 30 min. En ese momento puede suspender el calentamiento. Deje enfriar y saque el producto.

<u>Desechos</u>: El éter destilado puede reemplearse y los desechos acuosos deben neutralizarse.

Tiempo aproximado: 3 hrs.

Propiedades del producto:

Anote las características físicas de su producto y las diferencias observadas. a) Forme esferas del mismo peso de los diferentes productos. Deje caer la esfera desde la altura de la mesa y determine la altura a la cual rebota. b) Estire lentamente cada boligoma y determine la longitud máxima que alcanza antes de romperse. c) Coloque las esferas sobre una superficie plana y observe en cuanto tiempo pierde la forma esférica. Observe si las propiedades cambian pasada una semana.

Cuestionario

1.	La	reacción	entre	los	halogenuros	de	alquilo	(análogos	de	los	organosilanos
	halo	ogenados)	y el agi	ua pr	oduce el corre	spor	ndiente al	cohol. Sin e	emba	rgo,	la reacción que
	uste	ed ha lleva	ado al o	cabo	no produjo el	cor	respondie	ente			, ya que éstos
	con	densan ba	ajo las	condi	iciones de hid	rólis	is dando	diferentes			
	que	comúnme	nte sor	ıllam	ados						

- 2. Escriba las reacciones que se llevan a cabo al mezclar diclorotrimetilsilano y agua.
- 3. ¿Que hubiera pasado durante la hidrólisis si se hubiera adicionado clorotrimetilsilano a la mezcla éter/diclordimetilsilano?
- 4. ¿A qué se debe el cambio del aceite de silicona a boligoma? ¿Cuál es la función del óxido de boro?
- 5. ¿Cómo se modifican las propiedades de la boligoma cuando varía la cantidad de óxido de boro? Organice sus observaciones en la tabla.

Boligoma %B ₂ O ₃	Aspecto		Rebote máximo		Elongación máxima		Deformación	
3								
5								
7								

- 6. ¿A qué se deben las diferencias observadas?
- 7. ¿Cambiaron las propiedades pasada una semana?
- 8. De acuerdo con sus observaciones ¿cuáles fueron las proporciones optimas de B₂O₃ para la obtención de boligoma?

- 9. ¿Podría usted dar una explicación del porque de las diferentes propiedades físicas y químicas de SiO₂ y CO₂?
- 10. Se conocen una enorme variedad de polímetros de silicio. Busque en la literatura un ejemplo de siliconas que tengan aplicaciones en medicina y un ejemplo con aplicación en la industria pesada.

Bibliografía

- ❖ Z. Szafran, R. m. Pike, M. M. Singh, "Microscale Inorganic Chemistry", NY Waveland Press, Inc. 1991, p 176-181.
- ❖ .Kirk-Othmer, "Encyclopedia of Chemical Technology" Vol. 20, NY, 3ra. Ed. Wiley-Interscience, 1979, p 922-962.
- ❖ Armitage, D. A. y colaboradores, *J. Chem. Educ.* 50 (1973) 434.
- ❖ Hojas de seguridad HSM (MSDS): Se recomienda buscar el número de producto (sigma-CAS aldrich) el para facilitar la búsqueda en páginas web como http://www.sigmaaldrich.com/mexico.html que proporciona hojas de seguridad en español de sus productos. Una vez encontrado el reactivo debe ir a la página de este pulsando el número aldrich del mismo y en está página en el costado derecho podrá encontrar la MSDS que busca. Para realizar búsquedas en otra páginas es recomendable buscar primero el número CAS y con este la MSDS para facilitar su búsqueda. Algunas páginas http://www.gfschemicals.com/ que puede consultar son: (ir Search); http://www.mallbaker.com/Default.asp (seleccionar México e ir a msds en Quick links); http://www2.hazard.com/msds/index.php; http://www.msds.com/; http://www.chemexper.com/ (buscar compuesto después msds); http://www.msdsonline.com/ (ir a msds search arriba a la derecha).

Trabajo Previo

- Busque la Hoja de Seguridad del Material (HSM, en inglés MSDS) de <u>reactivos</u>, <u>disolventes y productos</u> (o la información equivalente). <u>Escriba y Estudie cada uno de los apartados para: los peligros, primeros auxilios, acciones por incendios, liberación accidental, manipulación y almacenamiento, protección personal, información toxicológica, información ecológicas, y consideraciones relativas a la eliminación de cada una de las substancias.</u>
- □ Antecedentes e introducción: <u>Organopolisiloxanos o silicona</u>, generalidades.