Práctica 2. Densidad

Elaboró: Dr. Ruy F. Cervantes Díaz de Guzmán Revisaron: M. en C. Martha Magdalena Flores Leonar Dr. Víctor Manuel Ugalde Saldívar

PREGUNTAS A RESPONDER AL FINAL DE LA PRÁCTICA

¿La densidad es una propiedad intensiva o extensiva? ¿Por qué?

¿Cómo influye la temperatura en la densidad de una disolución de azúcar?

PROBLEMA

- Medir la densidad de 10 mL, 20 mL y 30 mL, para una de las disoluciones preparadas.
- Realizar experimentalmente una curva de calibración que relacione la concentración de distintas disoluciones de azúcar con su densidad.
- Encontrar la concentración % m/v, de una bebida comercial (jugo, refresco, etc).
- Estudiar el efecto de la temperatura en la densidad de disoluciones de azúcar.

CUESTIONARIO PREVIO

1.	¿Cómo se define la densidad y cuáles son sus unidades?
2.	¿Para qué sirve conocer la densidad de cualquier sustancia o disolución?
3.	¿Cómo se calcula el porcentaje en masa de una disolución?

Г	Cálculos:
	% m/m =
5.	La compañía Del Valle reporta en la información nutrimental de uno de sus productos, que su bebida contiene 29.0 g de azúcar por cada porción de 240 mL de bebida. Considera la densidad de la bebida como 1.1 g/mL ¿cuál es el % m/V de azúcar en el jugo?
C	Cálculos: % m/m =
6.	En general ¿cómo afecta la temperatura en el valor de la densidad de una disolución?
7.	¿Qué es una curva de calibración y para qué sirve?

4. Si se pesan 35.0 g de cloruro de sodio y se agrega agua suficiente para alcanzar los 150.0 g totales,

¿cuál es el % m/m de dicha disolución? Escribe tu estrategia de cálculo.

PROCEDIMIENTO EXPERIMENTAL

Parte A. Relacionar a la densidad como una propiedad intensiva o extensiva.

a) Preparación de las disoluciones de azúcar

Preparar disoluciones de las siguientes concentraciones: 0, 2, 4, 8, 12, 16, 20, 24, 28 y 32 % m/m. Para ello debes seguir los siguientes pasos:

- 1. En un matraz Erlenmeyer pesa la cantidad de gramos correspondientes a la concentración de azúcar de la disolución, por ejemplo, si quieres preparar una disolución de azúcar al 5 % m/m, debes pesar 5 g de azúcar.
- 2. Una vez pesado el azúcar debes añadir al matraz el agua destilada necesaria para llegar a una masa total de 100 g. Otra opción es pesar 95 g de agua y añadirle los 5 g de azúcar que previamente pesaste.
- 3. Agita moderadamente hasta obtener una disolución homogénea.

- 4. Vierte la disolución en un frasco y etiquétalo con la concentración correspondiente expresada en % m/m.
- 5. Repite el procedimiento experimental para cada una de las disoluciones que vayas a preparar.
- b) Determinación de la relación masa/volumen, para 10, 20 y 30 mL de una disolución de azúcar.
- 1. Mide la temperatura inicial de la disolución, en cada volumen que utilices.
- 2. Determina la masa con la mayor precisión y exactitud, de 10, 20 y 30 mL, de una de las disoluciones que preparaste. (Puedes elegir cualquiera).
- 3. Registra tus datos en la tabla 1
- 4. Calcula la relación masa/volumen en cada caso.

Tabla 1

Temperatura			
	Volumen (10 mL)	Volumen (20 mL)	Volumen (30 mL)
m _{1 (g)}			
m _{2 (g)}			
m _{3 (g)}			
m promedio (g)			
(m/V) promedio (g/mL)			

Cuestionario 1.

1.	¿Cuál es la relación m/V, expresada en g/mL, en los volúmenes de 10 mL, 20 mL y 30 mL, de la disolución que elegiste?				
2.	En una hoja de papel milimétrico, traza el gráfico de la relación m/v (ordenadas) en función del volumen utilizado (abscisas).				
3.	¿Qué valor tiene la pendiente? ¿Qué significado físico tiene este valor?				

PROCEDIMIENTO EXPERIMENTAL

Parte B. Construcción de la curva de calibración

a) De las disoluciones de azúcar que preparaste, determina su densidad con ayuda de un densímetro. Para medir la densidad de un líquido sigue las siguientes indicaciones:

- 1. Antes que nada mide la temperatura mediante un termómetro y anótala. T= _____ °C
- 2. Coloca la disolución a la cual le vas a medir la densidad en el tubo del densímetro evitando llenarlo.
- 3. Introduce el densímetro lentamente y con cuidado en el tubo. NO lo dejes caer, puesto que puede romper el fondo del tubo. Para evitarlo puedes darle una rotación con los dedos de forma que caiga girando.
- 4. Una vez que el densímetro se encuentre flotando en la disolución, procede a medir la densidad en su escala. Procura que no esté pegado a la pared del tubo, sino que se encuentre perfectamente perpendicular a la mesa.
- 5. Para tener una buena lectura, debes tener la mirada a la altura del nivel del líquido.
- 6. Recolecta tus datos experimentales en la tabla 2 y calcula los % m/V de cada disolución.

Tabla 2. Densidad (g/mL) de distintas disoluciones de azúcar medidas a _____ ºC.

Concentración (% m/m)	Densidad (g/mL)	Concentración (% m/V)
0		
2		
4		
8		
12		
16		
20		
24		
28		
32		

Si la densidad se representa con el símbolo ϱ , escribe una expresión matemática que relacione ϱ , con el % m/V y el % m/m. Escribe las unidades correspondientes de cada parámetro.

Expresión matemática:		

- 1. Con los datos de la tabla 2, traza una gráfica en una hoja de papel milimétrico, de la densidad en función de la concentración (% m/V de azúcar).
- 2. Determina la ecuación de la recta. Recuerda que la fórmula general de una recta es: y = m x + b

Ecuación de la recta:	
¿Qué unidades tiene m ?	

- b) Determinación de la concentración % m/v, de una bebida comercial (jugo, refresco, etc).
 - 1. Traer una bebida comercial, puede ser un jugo de frutas o tu refresco favorito.
 - 2. Eliminar la mayor cantidad posible de gas de la bebida que elegiste.
 - 3. Determinar la densidad, con la ayuda de un densímetro, como lo hiciste para las disoluciones de azúcar.

Cuestionario 2

1.	Con la ayuda de la curva de calibración y de la ecuación que encontraste, determina el valor de la concentración % m/V de la bebida que trajiste.
2.	Compara el valor de la concentración obtenida experimentalmente con el valor que reporta el fabricante. ¿Es semejante? Sí o No, explica tu respuesta.
3.	¿Cómo se llama el método que utilizaste para encontrar el valor de la concentración?

Parte C. Efecto de la temperatura en la densidad de las disoluciones.

La temperatura es uno de los factores que afectan la densidad de las disoluciones. Para averiguar cómo se comporta esta variación hay que determinar la densidad de todas las disoluciones preparadas a distintas temperaturas. Como ya determinaste los valores a temperatura ambiente, solo falta medir sus densidades a $50\,^{\circ}$ C y $70\,^{\circ}$ C.

- 1. Calienta la disolución a la cual vas a determinar su densidad en un matraz Erlenmeyer a baño María. Hay que tener el mayor cuidado de no dejar evaporar el agua.
- 2. Una vez caliente, viértela en el tubo del densímetro y toma la lectura de la densidad a 50 °C y 70 °C. (recomendación: calienta ligeramente por encima de 70 °C).
- 3. Registra tus resultados en la tabla 3.

Tabla 3. Densidad (g/mL) de distintas disoluciones de azúcar medidas a distintas temperaturas.

Concentración		Densidad (g de disolución/ mL de disolución)						
% m/m	% m/V	Tamb	50°C	70°C				
0								
2								
4								
6								
8								
12								
16								
20								
24								
28								
32								

Con los resultados de la tabla 2, traza en la misma gráfica, la densidad en función de la concentración (% m/V) de azúcar para cada una de las temperaturas. Emplea símbolos o colores deferentes para cada conjunto de datos de una misma temperatura.

CUESTIONARIO FINAL

1. ¿La densidad es una propiedad intensiva o extensiva? ¿Por qué?
2. Explica por qué al aumentar la cantidad de soluto en las disoluciones de azúcar, la densidad también aumenta
3. ¿Qué representa el valor de la ordenada al origen en la curva de calibración?

4. Si la densidad es el cocier	ite de masa/volumen	¿Qué	es lo	que se	e está	modificando	en	disolución	cuando
disminuye la temperatura?									
¿Aumenta o disminuye?									
-									

Tratamiento de residuos Las disoluciones de azúcar (sacarosa) pueden ser desechadas a la tarja.