Definition 1: An operator O is a mathematical entity that transforms a function f (x) into another
function g(x) as follows, R4(96)

Of(z) = g(x),
where f and g are functions of x.
Definition 2: An operator O that represents an observable O is obtained by first writing the clas-
sical expression of such observable in Cartesian coordinates (e.g., O = O(x,p)) and then substi-

tuting the coordinate x in such expression by the coordinate operator & as well as the momentum p
by the momentum operator p = —ihd/0x.

Definition 3: An operator O is linear if and only if (iff),
O(af(z) + bg(z)) = aOf(z) + bOg(z),

where a and b are constants.
Definition 4: An operator O is hermitian iff,

*

/ dz ¢’ (2)Othm () = [ / dz )k (2) O, (:I?)] :
where the asterisk represents the complex conjugate.
Definition 5: A function ¢, (x) is an eigenfunction of O iff,
O¢,, (2) = Oxdu();
where O,, is a number called eigenvalue.

Property 1: The eigenvalues of a hermitian operator are real.
Proof: Using Definition 4, we obtain

*

/(1;1'(,‘);(:13)00”(17) - [/ (l;z:cbZ(;z.r)Odb,l(:zt)] =,
therefore,
[Or — O] / dxdn () dn(z) = 0.
Since ¢,,(x) are square integrable functions, then,

On =O.

Property 2: Different eigenfunctions of a hermitian operator (i.e., eigenfunctions with different
eigenvalues) are orthogonal (i.e., the scalar product of two different eigenfunctions is equal to
zero). Mathematically, if O¢,, = O,¢,, and O¢,, = O,,d,,, with O,, # O,,, then f dx ¢l dm = 0.

Dennf.



The square of an operator is defined as the product of the operator with itself:

Levin, Quantum

A? = AA.Let us find the square of the differentiation operator: ‘Chemistry
D*f(x) = D(Df) = Df" = f*
D? = d*/dx’

As another example, the square of the operator that takes the complex conjugate of a
function is equal to the unit operator, since taking the complex conjugate twice gives
the original function. The nth power of an operator (n =1,2,3,...) is defined to mean
applying the operator n times in succession.

It turns out that the operators occurring in quantum mechanics are linear. A is a
linear operator if and only if it has the following two properties:

A[f(x) + g(x)] = Af(x) + Ag(x) (39)*
Alcf(x)] = cAf(x) (3.10)*
where f and g are arbitrary functions and c is an arbitrary constant (not necessarily

real). Examples of linear operators include x2, d/dx, and d*/dx*. Some nonlinear opera-
tors are cos and ()%, where ()’ squares the function it acts on.

EXAMPLE Is d/dx a linear operator? Is V' a linear operator?
We have

(d/dx)[f(x) + g(x)] = df/dx + dg/dx = (d/dx)f(x) + (d/dx)g(x)
(d/dx)[cf(x)] = c df(x)/dx
so d/dx obeys (3.9) and (3.10) and is a linear operator. However,
V(x) + g(x) # Vf(x) + Vg(x)
so V' does not obey (3.9) and is nonlinear.

A major difference between operator algebra and ordinary algebra is that num-
bers obey the commutative law of multiplication, but operators do not necessarily do
s0; ab = ba if a and b are numbers, but A B and B A are not necessarily equal opera-
tors. We define the commutator [ A, B) of the operators A and B as the operator
AB - BA:

[A,B)=AB- BA 3.7+
If AB = BA, then [A, B] = 0,and we s gthat A and B commute. If AB # BA, then

A and B do not commute. Note that [A, B]f = ABf — BAf. Since the order in which
we apply the operators 3 and d/dx makes no difference, we have

d a
[g’dx] 3dx__xg .
From Eq. (3.5) we have
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[%x] —Di-ib=1 (38)

The operators d/dx and x do not commute.



3.2 EIGENFUNCTIONS AND EIGENVALUES

Suppose that the effect of operating on some function f(x) with the operator A is sim-
ply to multiply f(x) by a certain constant k. We then say that f{x) is an eigenfunction of
A with eigenvalue k. As part of the definition, we shall require that the eigenfunction
f(x) is not identically zero. By this we mean that, although f(x) may vanish at various
points, it is not everywhere zero. We have

Af(x) = kf(x) (3.14)*

(Eigen is a German word meaning characteristic. “Eigenvalue” is a hybrid word; it has
been suggested that “characteristicwert” would be just as suitable.) As an example of
(3.14), ¢* is an eigenfunction of the operator d/dx with eigenvalue 2:

(d/dx)e> = 2>

However, sin 2x is not an eigenfunction of d/dx, since (d/dx) (sin 2x) = 2 cos 2x, which
is not a constant times sin 2x.

EXAMPLE (a) Find the eigenfunctions and eigenvalues of the operator d/dx. (b) If we im-
pose the boundary condition that the eigenfunctions remain finite as x — * oo, find the eigen-

values. .
(a) Equation (3.14) with A = d/dx becomes
df(x)/dx = kf(x) (3.17)
df/f = kdx

Integration gives

In f = kx + constant
f = econsumekx
f=ce" (3.18)

The eigenfunctions of d/dx are given by (3.18). The eigenvalues are k, which can be any
number whatever and (3.17) will still be satisfied. The eigenfunctions contain an arbitrary multi-
plicative constant c. This is true for the eigenfunctions of any linear operator, as was proved in
the previous example. Each different value of k in (3.18) gives a different eigenfunction.
However, eigenfunctions with the same value of k but different values of ¢ are not independent
of each other.

(b) Since k can be complex, we write it as kK = a + ib, where a and b are real numbers. We
then have f(x) = ce*¢®*. The factor ¢** goes to infinity as x goes to infinity if a is positive; it goes
to infinity as x goes to minus infinity if a is negative. Hence the boundary conditions require that
a = 0, and the eigenvalues are k = ib.



4g=q-

Each Cartesian component of linear momentum p, is replaced by the operator

where i = V —1 and d/dq is the operator for the partial derivative with respect to the
coordinate g. Note that 1/i = i/i* = i/(—1) = —i.

42 Chapter 3 Operators
Consider some examples. The operator corresponding to the x coordinate is mul-
tiplication by x:
X=x- (3.21)*
Also,
y=y+ and Z=2- 3.22)*
The operators for the components of linear momentum are

. ko . ko . hKa

=— — =— — = *
=% PThay PTG 65)
The operator corresponding to p? is
h oV _h o h o &
pl=|-—) =7 — - —=-#— 24
Px (i ax) i ax i ax ﬁaxz (3.24)

with similar expressions for p’ and p?.
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gl B, e (534
v, = dx/dt, v, = dy/dt, v, = dz/dt
We define the particle’s linear momentum vector p by
p=mv (5.35)*
Px = mv,, py = mv,, p. = mv, (5.36)

The particle’s angular momentum L with respect to the coordinate origin is
defined in classical mechanics as

L=rxp (5.37)*
i j k
L=|x y z2 (5.38)
pP: Py P:
L,=yp.—2py, Ly=2zp,—xp;, L,=2xp,—yp: (5.39)

where (5.29) was used. L,, L,, and L, are the components of L along the x, y, and z
axes. The angular-momentum vector L is perpendicular to the plane defined by the
particle’s position vector r and its velocity v (Fig. 5.4).

The torque 7 acting on a particle is defined as the cross product of r and the force
F acting on the particle: 7 = r X F. It is readily shown that (Halliday and Resnick,
Section 12-3) 7 = dL/dt. When there is no torque acting on the particle, the rate of
change of its angular momentum is zero; that is, its angular momentum is constant (or
conserved). For a planet orbiting the sun, the gravitational force is radially directed.
Since the cross product of two parallel vectors is zero, there is no torque on the planet
and its angular momentum is conserved.
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Une-rarticie Urbial-Angular-vMomentum uUperators. NOW IOr the quantum-
mechanical treatment. In quantum mechanics, there are two kinds of angular
momenta: orbital angular momentum results from the motion of a particle through
space, and is the analog of the classical-mechanical quantity L; spin angular momen-
tum (Chapter 10) is an intrinsic property of many microscopic particles and has no
classical-mechanical analog. We are now considering only orbital angular momentum.

FIGURES.4 L=r X p

Chapter5  Angular Momentum

We get the quantum-mechanical operators for the components of orbital angular
momentum of a particle by replacing the coordinates and momenta in the classical

equations (5.39) by their corresponding operators [Egs. (3.21)—(3.23)]. We find

P . ad d
Lo=-#(y2-22) (5.40)
a . ad d
L,= —dt(z ~aal az) (5.41)
- . ad ad
L,= —ih (x v y ax) (5.42)

(Since yp, = p,y,and so on, we do not run into any problems of noncommutativity in

constructing these operators.) Using

L2=fRP=L-L=L2+L2+ L2 (5.43)

we can construct the operator for the square of the angular-momentum magnitude

from the operators in (5.40)—(5.42).

At last, we are ready to express the angular-momentum components in spherical
coordinates. Substituting (5.51), (5.63), and (5.64) into (5.40), we have

- d sinf d
L — _'ﬁ 1 1 Bt i —
" i [r snnOsmdt(cosBar . 60)

.. 8 cosfsing 9 cos¢ 9 )]
r cos (sm sin ¢ o ; rend o9

of ., @ a
L. = m(sm(b;é - cotooos¢£) (5.65)



Now consider the potential-energy and Kinetic-energy operators in one dimen-
sion. Suppose we had a system with the potential-energy function V(x) = ax?, where a is
a constant. Replacing x with x - , we see that the potential-energy operator is simply
multiplication by ax*:

V(x) = ax*-
In general, we have for any potential-energy function
V(x) = V(x)- (3.25)*
The classical-mechanical expression for the kinetic energy 7'in (3.20) is
T = p?/2m (3.26)*
Replacing p, by the corresponding operator (3.23), we have
2 2 p2
f=-;—m§=—;—mi—z (327)

where (3.24) has been used, and the partial derivative becomes an ordinary derivative
in one dimension. The classical-mechanical Hamiltonian (3.20) is

H=T+V = p}2m+ V(x) (3.28)
The corresponding quantum-mechanical Hamiltonian (or energy) operator is
Bl 1 e el
= = - —— & *
+ om de V(x) 3.29)

which agrees with the operator in the Schrédinger equation (3.1). Note that all these
operators are linear.

One-Particle Orbital-Angular-Momentum Eigenfunctions and Eigenvalues.

We now find the common eigenfunctions of L? and L, which we denote by Y. Since

these operators involve only 6 and ¢, Y is a function of these two coordinates:

Y =Y (6, ¢). (Of course, since the operators are linear, we can multiply Y by an arbi-
trary function of r and still have an eigenfunction of L? and L ,.) We must solve

L.Y(6,9) = bY (6, ¢) (5.69)

L?v(6.4) = cY(6.9) (5.70)

where b and c are the eigenvalues of L,and L2
Using the L, operator, we have

- B
~ih 35 Y(0.4) = bY(6,9) (5.71)

Since the operator in (5.71) does not involve 6, we try a separation of variables, writing
Y(0, ¢) = S(O)T(¢) (5.72)

In summary, the one-particle orbital angular-momentum eigenfunctions and
eigenvalues are [Eqgs. (5.69), (5.70), (5.75), and (5.94)]

LY, ¢) = I(l + DRYP6,4), 1=0,1,2,... (5.108)*
LY0,¢) = mhYP(6,¢), m=—1L—1+1,...01-11 (5109)*

where the eigenfunctions are given by (5.107). Often the symbol m, is used instead of
m for the L, quantum number.



Notaciéon de Dirac:

Notacién funcional Notacién de Dirac
W(q,t) — ket: |W)
(g, t)* st bra: (|
/ UIW;dg  — bracket: (¥;|¥;) = (i5)
> avw —_ a W)
(a¥)* =3 (¥|at
| wiavd  —  (waly) = Glal)
al = aW —_ ala) = ala)

e La unidn de bra y ket, en ese orden, genera una integral a todo el espacio.

e af es el operador adjunto de 4. El adjunto actia sobre los bra del mismo modo que el
operador acttia sobre los ket. Se cumple: (af)f = a.

e Un operador es hermitico si y sélo si a' = a.
e Para un producto de operadores (&3)" = 3faf, de modo que (a3¥)* — (W] Btat

e Para una combinacién lineal de operadores (c1a + c'zB)i = ci‘cﬂ + c;‘Bf‘

Suma de operadores: Definimos la suma de operadores de modo que, para cualquier funcién W
C=A+B = CU=AV¥+BU. (6)

De este modo, la suma de operadores hereda las propiedades de la suma de funciones: conmutativa

y asociativa.

El operador nulo, 0 = 0 para cualquier funcién WU, es el elemento neutro de la suma: Wiz A+0 = A.

Producto de operadores: Definimos el producto de dos operadores como la aplicacién sucesiva de
ambos, siendo el mas cercano a la funcién el primero que actua:

C=AB = C¥=A(BVY). (7)
Este producto es asociativo, y distributivo respecto de la suma. Sin embargo, en general, el producto
de dos operadores cualesquiera no conmuta.
El opeArador uAnidad o identidad, 1¥ = W para toda funcién W, es el elemento neutro del producto:
Vj;: Al =1A.
Dado un operador A su inverso, A=1, es tal que AA=! = A-14 =1.

El conjunto de operadores lineales y hermiticos, con la adicién y producto definidos, constituye un
dlgebra no conmutativa.

Se define el conmutador de dos operadores como: [A, B] = AB — BA. El conmutador es, en
general, un operador, y serd nulo si y sélo si los operadores conmutan.



Operador de posicion de una particula: En un problema unidimensional (1D), el operador posicién
es i = x1 y tiene cardcter multiplicativo. Generalizdindo a 3D, podemos definir el operador vectorial
de posicién:

T = Tl + Yy + 2U=, (8)
donde los ii¢ son los vectores unidad cartesianos.

Operador momento lineal de una particula: Su forma en 1D y en 3D es:
% 210 2 . 5. 0 5 . ¢ P
(1D): pe = —ih—, (3D): p= —ih ta— + Uy— + U>— p = —ihV, (9)
ox Ox 7 Oy z

donde i = \/—1 es el nimero imaginario, y i = h/2=. La presencia de i permite que el operador
sea hermitico. Vedamoslo en 1D:

Por partes:
o0 1 * 0 ; dW
/ |:—‘iﬁ(—\ll(.p):| \IJ(.Lt)(LL' = +zﬁ,/ : \I/(lf)d.lj = U=V = dU = —dx
e dx VEP IR dU* dw
dV = —dz =V = ¥*
L
’ o0 d
— R[]+ / O [—ih-t W, (10)
g dx
de modo que p, es hermitico si y sélo si ]imI_.j:x|\II|2 = 0, pero este comportamiento

estd garantizado por la condicién de cuadrado integrable que debe cumplir la funcién de onda.



