

# Transformation of Chemically Competent *E. coli*

#### Rachel Green<sup>1</sup>, Elizabeth J. Rogers

Johns Hopkins School of Medicine/HHMI, Molecular Biology and Genetics, Baltimore, MD, USA <sup>1</sup>Corresponding author: e-mail address: ragreen@jhmi.edu

#### Contents

| 1.  | Theory                           | 330 |
|-----|----------------------------------|-----|
| 2.  | Equipment                        | 330 |
| 3.  | Materials                        | 330 |
|     | 3.1 Solutions & buffers          | 331 |
| 4.  | Protocol                         | 332 |
|     | 4.1 Preparation                  | 332 |
|     | 4.2 Duration                     | 332 |
| 5.  | Step 1 Prepare Competent Cells   | 333 |
|     | 5.1 Overview                     | 333 |
|     | 5.2 Duration                     | 333 |
|     | 5.3 Tip                          | 333 |
|     | 5.4 Tip                          | 334 |
|     | 5.5 Tip                          | 334 |
|     | 5.6 Tip                          | 334 |
|     | 5.7 Tip                          | 334 |
| 6.  | Step 2 Transform Competent Cells | 334 |
|     | 6.1 Overview                     | 334 |
|     | 6.2 Duration                     | 334 |
|     | <b>6.3</b> Tip                   | 335 |
|     | <b>6.4</b> Tip                   | 336 |
|     | <b>6.5</b> Tip                   | 336 |
|     | <b>6.6</b> Tip                   | 336 |
| Ref | ferences                         | 336 |

#### Abstract

To introduce DNA into E. coli cells.

## 1. THEORY

Transformation of E. *coli* is an important step that allows the introduction of heterologous DNA using plasmid vectors or introducing mutations via homologous recombination events.

### 2. EQUIPMENT

Shaking incubator (37 °C) UV/Vis spectrophotometer Refrigerated low-speed centrifuge (4 °C) Water bath (42 °C) Incubator (37 °C) Erlenmeyer flask, 500 ml (sterile) 10-cm Petri plates 0.2-µm filters 14-ml sterile polypropylene snap-cap tubes Disposable cuvettes 50-ml sterile polypropylene tubes (e.g., Corning 430829) 2-ml sterile screw-capped conical tubes with no skirt (e.g., Phenix SCS-02 S) 5–10-ml glass vials or autoclavable screw-capped tubes Glass spreader

#### 3. MATERIALS

Antibiotic of choice Bacto agar Bacto tryptone Bacto yeast extract Calcium chloride (CaCl<sub>2</sub>) Magnesium chloride (MgCl<sub>2</sub>) Magnesium sulfate (MgSO<sub>4</sub>) Manganese chloride (MnCl<sub>2</sub>) 3-(*N*-Morpholino)-propanesulfonic acid (MOPS) Potassium acetate (KOAc) Potassium chloride (KCl) Rubidium chloride (RbCl) Sodium chloride (NaCl) Glucose Glycerol Acetic acid Sodium hydroxide (NaOH) Potassium hydroxide (KOH) Dry ice Ethanol Liquid nitrogen

#### 3.1. Solutions & buffers

Step 1 Psi Media

| Component         | Amount |
|-------------------|--------|
| Tryptone          | 20 g   |
| Yeast extract     | 5 g    |
| MgCl <sub>2</sub> | 5 g    |
|                   |        |

Dissolve in 900 ml deionzed water. Adjust the pH to 7.6 with KOH. Add water to 1 l and autoclave to sterilize

Note: You can also use LB medium (low salt) supplemented with 4 mM  $MgSO_4$  and 10 mM KCl or SOB (also commercially available)

| Component                            | Final concentration | Amount |
|--------------------------------------|---------------------|--------|
| Potassium acetate                    | 30 mM               | 1.18 g |
| RbCl <sub>2</sub>                    | 100 mM              | 4.84 g |
| CaCl <sub>2</sub> ·2H <sub>2</sub> O | 10 mM               | 0.59 g |
| MnCl <sub>2</sub> ·4H <sub>2</sub> O | 50 mM               | 3.96 g |
| Glycerol                             | 15% (v/v)           | 60 ml  |

#### Tfb I (Transformation Buffer I)

Dissolve in 300 ml water. Adjust the pH to 5.8 with dilute acetic acid. Add water to 400 ml and pass through a 0.2- $\mu$ m filter to sterilize

| Component            | Final concentration | Amount |
|----------------------|---------------------|--------|
| MOPS                 | 10 mM               | 0.21 g |
| $CaCl_2 \cdot 2H_2O$ | 75 mM               | 1.1 g  |
| RbCl <sub>2</sub>    | 10 mM               | 0.12 g |
| Glycerol             | 15% (v/v)           | 15 ml  |

#### Tfb II (Transformation Buffer II)

Dissolve in 75 ml water. Adjust the pH to 6.5 with dilute NaOH. Add water to 100 ml and pass through a 0.2-µm filter to sterilize

| Component     | Amount |
|---------------|--------|
| Tryptone      | 10 g   |
| Yeast extract | 5 g    |
| NaCl          | 10 g   |
| Agar          | 15 g   |

#### Step 2 LB Agar (Miller's high salt)

Dissolve in 900 ml water. Adjust the pH to 7.2 with  $\sim$ 0.2 ml 5 N NaOH. Add water to 1 l and autoclave to sterilize. Cool to  $\sim$ 55 °C, add appropriate antibiotic and pour plates

Note: LB Agar is available commercially as a premixed powder

#### SOC media

| Component         | Final concentration | Stock | Amount  |
|-------------------|---------------------|-------|---------|
| Yeast extract     | 0.5%                | _     | 0.5 g   |
| Tryptone          | 2%                  | _     | 2.0 g   |
| NaCl              | 10 mM               | 3 M   | 0.33 ml |
| KCl               | 2.5 mM              | 1 M   | 0.25 ml |
| MgCl <sub>2</sub> | 10 mM               | 1 M   | 1 ml    |
| MgSO <sub>4</sub> | 10 mM               | 1 M   | 1 ml    |
| Glucose           | 20 mM               | 1.1 M | 1.82 ml |

Dissolve in 90 ml of deionized water and bring the volume to 100 ml. Dispense into 5–10 ml aliquots and autoclave to sterilize

## 4. PROTOCOL

#### 4.1. Preparation

Pour selective agar plates and let harden.

Pick a single colony from a freshly streaked plate (without antibiotics!) and inoculate a small culture (2-5 ml) of Psi media in a sterile 14-ml snap-cap tube. Grow overnight at 37 °C with shaking at 250 rpm.

Store TfbI and TfbII at 4 °C to make sure they are chilled.

#### 4.2. Duration

| Preparation | About 15 min |
|-------------|--------------|
| Protocol    | About 4–6 h  |

See Fig. 28.1 for the flowchart of the complete protocol.



Figure 28.1 Flowchart of the complete protocol, including preparation.

### 5. STEP 1 PREPARE COMPETENT CELLS

#### 5.1. Overview

Grow cells to mid-log phase and make competent by chemical treatment.

#### 5.2. Duration

3–5 h

- **1.1** Inoculate 100 ml of Psi media with 0.5 ml of the overnight culture and incubate at 37 °C with vigorous shaking.
- **1.2** When  $A_{600}$  reaches 0.4–0.5, place on ice and chill for 5–10 min.
- **1.3** Transfer the cells to 50-ml sterile chilled polypropylene centrifuge tubes. Pellet cells at  $5000 \times g$ , 4 °C for 5 min.
- **1.4** Discard supernatant carefully and gently resuspend the cell pellet in 0.4 volume of ice-cold Tfb I (20 ml for each 50 ml tube). Do not vortex; keep on ice while resuspending.
- **1.5** Incubate the cells on ice for 15 min.
- **1.6** Pellet the cells at  $2000 \times g$ , 4 °C for 10 min.
- **1.7** Discard the supernatant carefully and gently resuspend in 0.02 volume of ice-cold TfbI II (1 ml for 50 ml of culture). Keep the tube on ice.
- 1.8 Aliquot 50  $\mu$ l into 2-ml prechilled sterile screw-capped tubes with conical bottoms.
- **1.9** Flash-freeze in a dry ice-ethanol bath or liquid nitrogen and store at -80 °C.

## 5.3. Tip

Use sterile technique at all times; the bacteria are not antibiotic-resistant at this point.

#### 5.4. Tip

If reusable tubes are used to pellet the cells, they must be very clean and free of soap residue.

## 5.5. Tip

Cells and transformation buffers should be kept cold at all times. It is also preferable to use chilled pipettes and do everything in the cold room if possible.

## 5.6. Tip

The incubation in Tfb I can vary from 5 min to 1-2 h without any harm. The cells must be kept on ice.

## 5.7. Tip

Do not use standard 1.5-ml conical microcentrifuge tubes – they do not work well in the heat shock step of the transformation.

See Fig. 28.2 for the flowchart of Step 1.

## 6. STEP 2 TRANSFORM COMPETENT CELLS

#### 6.1. Overview

Introduce DNA into competent cells and select for antibiotic-resistant bacteria.

## 6.2. Duration

2 h

- **2.1** Equilibrate a water bath to 42 °C. A dry heating block will work if the tube fits snugly, but it is not as good as a water bath.
- **2.2** Thaw one vial of competent cells on ice for each transformation. Handle gently since cells are sensitive to temperature changes and mechanical lysis.
- **2.3** Add 1–5 μl of DNA (10 pg to 100 ng) to a vial of thawed competent cells. DO NOT VORTEX OR PIPETTE UP AND DOWN.
- **2.4** Incubate on ice for 30 min.
- **2.5** Heat-shock cells for 30 s at 42  $^{\circ}$ C. Do not go any longer or shake the tube.
- **2.6** Remove the tube from the water bath and place on ice for 2 min.
- 2.7 Add 250 µl of SOC media to each vial.
- **2.8** Make sure that the cap is tight and incubate the tube on its side in a  $37 \degree$ C shaking incubator (200–250 rpm) for 1 h.



Figure 28.2 Flowchart of Step 1.

**2.9** Spread from 20 to 200  $\mu$ l on an appropriate selective plate. The plates should be at room temperature or prewarmed to 37 °C. Incubate overnight at 37 °C.

#### 6.3. Tip

Validate the chemically competent cells by plating untransformed cells on LB plates (without antibiotic – should have a lawn of cells) and LB plates containing antibiotic (should not have any colonies growing on them).



Figure 28.3 Flowchart of Step 2.

#### 6.4. Tip

Transform the cells with 10, 30, and 100 pg of supercoiled plasmid DNA and determine the transformation efficiency (# colonies per microgram DNA).

#### 6.5. Tip

Bacteria are transformed more efficiently using supercoiled DNA than ligated DNA.

#### 6.6. Tip

Transformed cells can be stored at  $4 \degree C$  for 24-48 h with minimal loss of viability. Transformation efficiency varies depending on DNA.

See Fig. 28.3 for the flowchart of Step 2.

#### REFERENCES

#### **Related Literature**

Hanahan, D. (1983). Studies on transformation of *Escherichia coli* with plasmids. Journal of Molecular Biology, 166, 557–580.

Hanahan, D., Jessee, J., & Bloom, F. R. (1991). Plasmid transformation of *Escherichia coli* and other bacteria. *Methods in Enzymology*, 204, 63–114.