
P.C. Chau (UCSD, 1999)

Analogies of transport properties
Behind the development of the Reynolds and Chilton-Colburn analogies is the appreciation that there are certain

similarities among the transport of momentum, mass, and energy. Transport phenomena is the integrated study of
these three physical properties—they intertwine under many circumstances. Generally, since concentration and
temperature are scalar quantities, analogies between mass and heat transport are more valid than those with
momentum.

Nevertheless, with proper definitions, the transports of these quantities all depend on transport coefficients with
the units of [length2/time]—kinematic viscosity, diffusivity, and thermal diffusivity. This is why kinematic
viscosity is also called momentum diffusivity. The flux laws of these quantities—Newton's law of viscosity, Fick's
law, and Fourier's law—all share the same linear constitutive equation. Certainly, we may also identify similar
features in their conservation equations. The idea is that, say, when we solve a diffusion problem, we may want to
find the solution of a similar heat conduction problem. The main motivation underlying the establishment of
transport analogies, however, is that we can take experimental measurements or correlations in one system, and
apply it to another. For example, we can apply heat transfer data to a mass transport problem where experimentation
with mass transport may be difficult. This is particularly important with turbulent flow. (You'd see more advanced
analogies in a graduate level course.) For now, keep the following table handy.

Table 1. Analogous quantities in transport phenomena

Momentum Mass Energy

Transport quantity
per volume

ρux CA ρCpT

Transport coefficient µ [g.cm–1s–1] DAB [cm2.s–1] k [cal.cm–1s–1K–1]

Diffusivity [cm2.s–1]   ν = µ/ρ DAB α = k/ρCp

Flux law    τxz = – ν d
dz(ρux)   Jz = – DAB

d
dzCA    qz = – α d

dz(ρCpT)

Dimensionless transport
groups

  Re = ULν   Sc = ν
DAB

  Pr = να =
Cpµ

k

Other dimensionless
groups used in transport
correlations

 Num =
k c L
DAB

 Pe = ReSc = UL
DAB

 St =
Num
ReSc =

k c
U

  Nuh = h L
ρCpα

  Pe = RePr = ULα

  St =
Nuh
RePr = h

ρCp U

For turbulent transport:

Reynolds analogy
(Sc = Pr = 1)

f
2

 k c
U

  hρCp U

Chilton-Colburn j-factor f
2

 k c
U Sc2/3 =

Num

Re Sc1/3
  h

ρCp UPr2/3 =
Nuh

Re Pr1/3

Note: The cgs unit of viscosity is the same as a poise. Strictly speaking, the Fick's law should be defined on
the basis on a mole fraction gradient.  Num is the same as the Sherwoord number (Sh).
Also, we may find the Lewis number defined as Le = Pr/Sc = DAB/α.
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http://ieng6.ucsd.edu/~pcchau/CENG103B/txtbk/analogy.pdf
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Reynolds Analogy

Uniform laminar
boundry layer

Turbulent flow
Free-stream
velocity, U

δ

Representation of the uniform boundary layer
model.

Here are the derivation steps to clarify Section 6.2. From
fluid dynamics (AMES 103A), the friction factor is defined as

  f =
τw

1
2 ρU2

(1)

We consider flow over a flat plate. If we assume a simple shear
flow in a uniform laminar boundary layer, we can approximate
the wall stress as

  τw ≈ µU
δ (2)

where U is the free-stream velocity and δ is fictitious uniform boundary layer thickness. So,

  δ ≈ µ U
τw

=
µU

1
2 ρU2 f

= ν
1
2 U f

(3)

and dividing by the length of the flat plate, L:

  δ
L

≈ ν
1
2 UL f

= 1
1
2 ReL f

,    where     ReL = UL
ν (4)‡

Next, we define the Sherwood number

 Sh L = kL
DAB

(5)

which is based on the length scale L. The average mass transfer coefficient k– is based on the film model and some
concentration boundary layer thickness δc:

  k =
DAB

δc
(6)

Thus
  Sh L =

DAB

δc

L
DAB

= L
δc

= L
δ

δ
δc

(7)

Finally, we know from scaling analysis that when Sc = 1, δ = δc, and thus the Sherwood number can be
evaluated as

  kL
DAB

= L
δ =

1
2 UL f

ν

If we equate the very first and last terms,

 1
2

f = k
U

(8)

since ν/DAB = 1. This is the Reynolds analogy which relates the friction factor to the mass transfer coefficient.

‡ If we invoke Blasius formula for turbulent flow, the friction factor is f = 0.0791 Re1/4, and we have the functional
dependence δ/L ~ Re–3/4.
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Chilton-Colburn  Analogy
We now take Sc ≠ 1, and use Eq. (7). Thus we need to say something about the ratio δ/δc. From a proper

scaling or from a boundary layer analysis, we should find that δ/δc ~ Sc1/3. We use this relation in (7), and further
substitute for δ/L by Eq. (4), and we have

 Sh L = 1
2 ReL f Sc1/3

and rearrangement gives

 1
2

f =
Sh L

ReLSc1/3
= jD (9)

which is the Chilton-Colburn analogy, and the mass transfer term on the RHS is also called the j-factor, jD.

Note that we can also write

  Sh L

ReLSc1/3
= kL

DAB

ν
UL

DAB

ν
1/3

= k
U

ν
DAB

2/3

(10)

where we can further define St = k–/U as the Stanton number.


