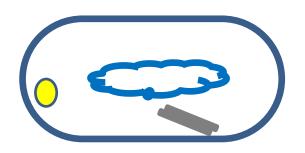
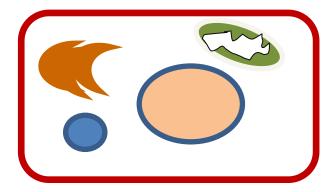


02.5) MATERIAL GENÉTICO Y CITOPLASMA: ESTRUCTURA, COMPOSICIÓN QUÍMICA Y FUNCIÓN DE CROMOSOMA BACTERIANO, PLÁSMIDOS, NÚCLEO MICROBIANO, CITOPLASMA E INCLUSIONES CITOPLASMÁTICAS.

CITOPLASMA:




Material celular contenido dentro de la membrana citoplásmica, ocupa todo el interior de la célula junto con los demás organelos.

- COMPOSICIÓN QUÍMICA (Citosol): agua, proteínas, carbohidratos, lípidos, otras sustancias orgánicas, Sales minerales
- CARACTERÍSTICAS FÍSICAS: en estado de gel, es elástico, sin embargo, su densidad es muy alta con respecto al agua

estructuras están "suspendidos" en el citoplasma (ribosomas, material genético, inclusiones, vesículas)

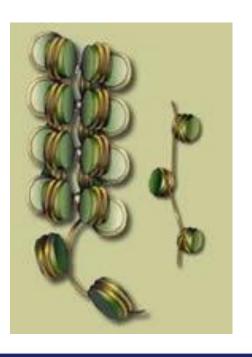
ESTRUCTURA EN EUCARIOTES: Complejo por la presencia de "citoesqueleto" (microfilamentos y microtúbulos) además de tener retículo endoplásmico liso y rugoso, aparato de Golgi, cloroplastos, mitocondrias y vacuolas.

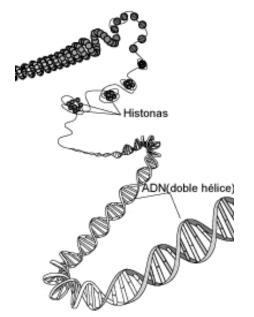
MATERIAL GENÉTICO

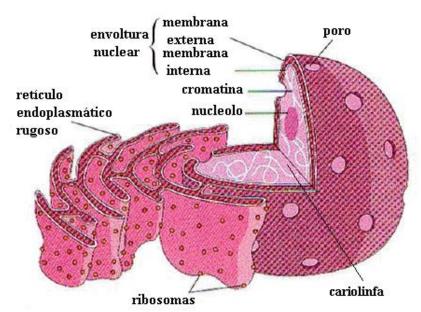
Contiene la información que codifica todas las características de un organismo. Está constituido por ADN.

Las características en procariotes son:

- 1. Se presenta cerrado, muy pocas especies lo presentan lineal.
- 2. No tiene proteínas en su conformación.
- 3. Es un solo cromosoma, aunque puede tener varias copias, sobre todo cuando está en división.
- 4. Además puede existir otro material extracromosomal llamado plásmidos.
- 5. Ninguno de estos materiales se encuentran dentro de otra membrana.

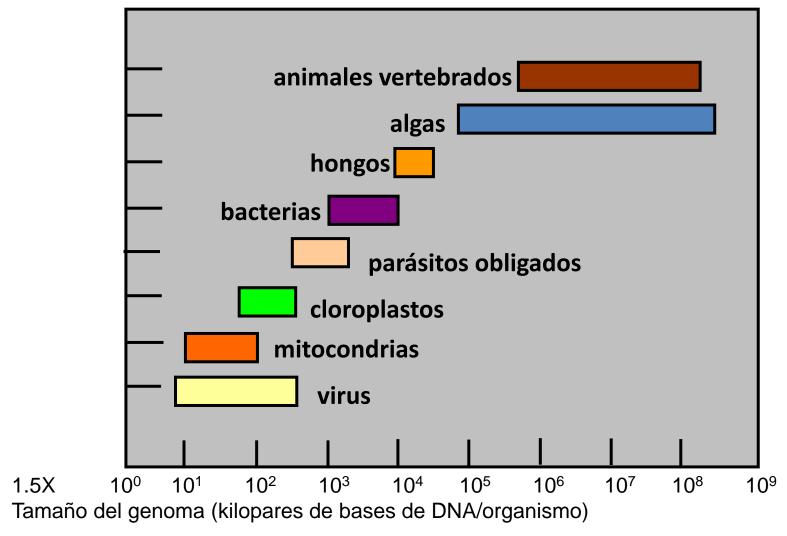



MATERIAL GENÉTICO



Para eucariotes se presenta:

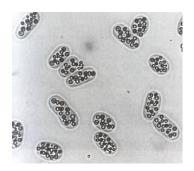
- 1. Empaquetado con las histonas (proteínas)
- 2. Hay más de un cromosoma, y pueden presentarse duplicados (diploide) o sencillos (haploide).
- 3. Es de forma lineal.
- 4. Se encuentran en el núcleo, definido por la membrana nuclear.



GENOMA DE SERES VIVOS

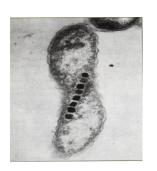
TAMAÑO, FORMAS Y NÚMERO DE CROMOSOMAS

Organismo	Comentario	Kilopares de bases	número de cromosomas	Geometría cromosomal
Mycoplasma pneumoniae	produce neumonía	7.8X10 ⁵	1	circular
Borrelia burgodoferi	Enfermedad de Lyme	9.5X10 ⁶	1	lineal
Escherichia coli	Bacilo Gram-	4.7X10 ⁶	1	circular
Bacillus subtilis	Bacilo Gram+	5.0X10 ⁶	1	circular
Thermococcus celer	Termófilo	1.9X10 ⁶	1	circular
Giardia lamblia	Protozoario flagelado	1.2X10 ⁷	4	lineal
Saccharomyces cerevisiae	Levadura	1.2X10 ⁷	16	lineal
Tetrahymena thermophila	Protozoario ciliado	2.1X10 ⁸	5	lineal

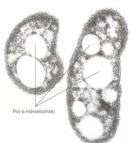

MATERIAL DE RESERVA DE ALIMENTO Y OTRAS **SUSTANCIAS**

Dentro de las funciones de la célula se puede encontrar el almacenaje de sustancias para poder utilizarlas en otras ocasiones cuando hay escasez de nutrientes.

En procariotes pueden tener una membrana diferente a la citoplásmica o formada por proteínas. Se les denomina inclusiones, pueden ser:


- gránulos de polifosfato 0
- magnetita (magnetosomas) 0
- ácido poli-β-hidroxibutírico 0
- glucógeno 0
- vesículas de gas (membrana impermeable de proteínas) 0
- carboxisoma, fijación de CO₂ 0

inclusiones de azufre


vesícula de gas

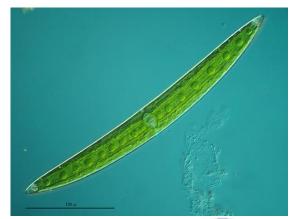
gránulos de magnetita

poli-β-hidroxi- carboxisoma butirato

MATERIAL DE RESERVA DE ALIMENTO Y OTRAS SUSTANCIAS

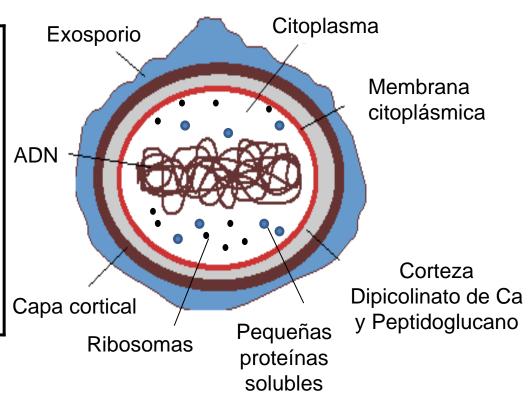
En eucariotes se almacenan en las vacuolas de reserva, que tienen una membrana similar a la citoplasmática. El contenido puede estar formado por almidón, paraamilón, grasas, etcétera.

protozoario


amiba

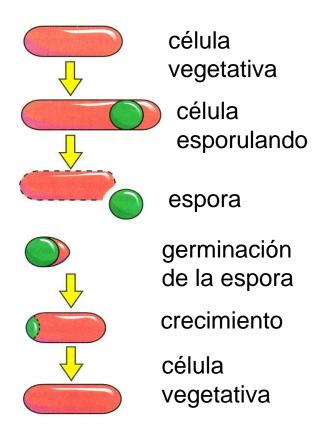
levadura

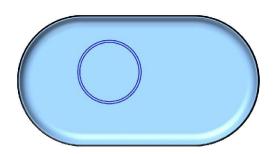
alga


02.6) ESTRUCTURAS DE RESISTENCIA A CONDICIONES AMBIENTALES ADVERSAS.

Endospora: Estructura (célula) de resistencia a condiciones ambientales adversas, producido por bacilos y algunos cocos Gram positivos. Se denomina así porque se forma en el interior de la célula y por cada célula se forma una endospora, que a su vez da origen a una célula.

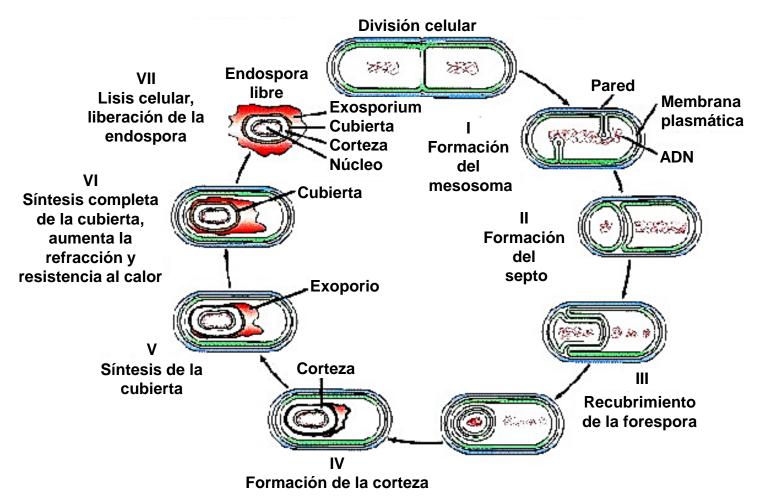
Componentes de la endospora (de adentro hacia afuera):


- 1. ADN.
- 2. Ribosomas.
- 3. Pared nuclear.
- 4. Corteza dipicolinato de calcio.
- 5. Envoltura de la espora.
- 6. Exosporio.



ENDOSPORA

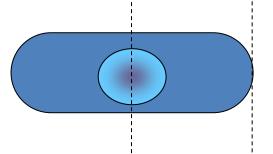
Secuencia del ciclo de esporulación:


- 1. Célula vegetativa.
- 2. Célula esporulando.
- 3. Espora (liberación).
- 4. Germinación de la espora.
- 5. Crecimiento.
- 6. Célula vegetativa.

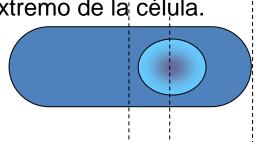
FORMACIÓN DE LA ENDOSPORA

FORMACIÓN DE LA ENDOSPORA

CARACTERÍSTICAS DE LA ENDOSPORA


Un microorganismo tarda en formar la endospora en horas, hay bacilos que esporulan en 12 horas o menos.

Forma de la endospora: oval o esférica



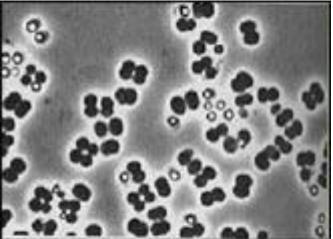
Lugar de formación de la endospora (aplica sólo a bacilos)


Central si se forma a la mitad de la célula.

Subterminal si se forma la mitad entre extremo de la célula.

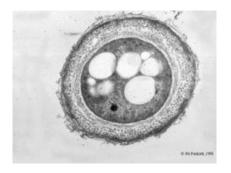
Terminal si se forma en un extremo de la célula.

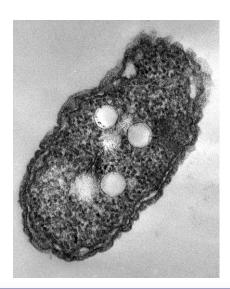
COMPARACIÓN ENTRE ENDOSPORA Y CÉLULA VEGETATIVA

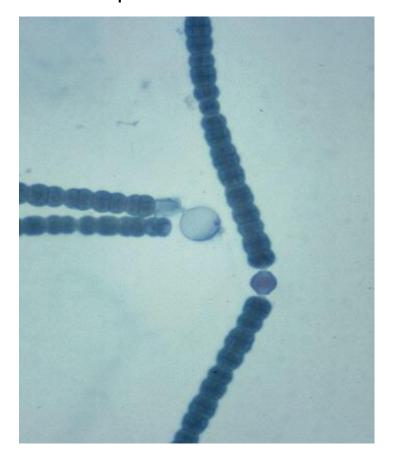

CARACTERÍSTICAS	FORMA VEGETATIVA	ENDOSPORA
Estructura	Célula Gram (+) típica	Corteza gruesa y exosporio
Apariencia microscópica	No refringente	Refringente
Contenido de calcio	Bajo	Alto
Ácido dipicolínico	Ausente	Presente
Metabolismo	Alto	Bajo o ausente
Actividad enzimática	Alta	Baja (casi nula)
Síntesis de macromoléculas	Presente	Ausente
mARN	Presente	Escasa o ausente
Resistencia al calor	Baja (50°C)	Elevada (90°C)
Resistencia a la radiación	Baja	Elevada
Resistencia a compuestos q.	Baja	Elevada
Capacidad para teñirse	Fácil	Difícil (métodos especiales)
Efecto de la lisozima	Sensible	Resistente
Contenido de agua	80-90%	10-25% en el núcleo
PH citoplásmico	Alrededor de 7	5.5-6.0 en el núcleo

GÉNEROS REPRESENTATIVOS DE BACTERIAS PRODUCTORAS DE ENDOSPORAS

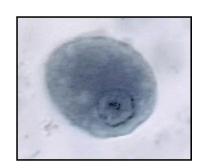
Bacillus Clostridium

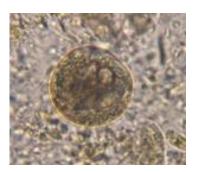

Sporosarcina

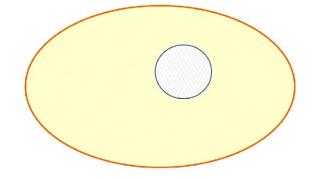



CISTOS

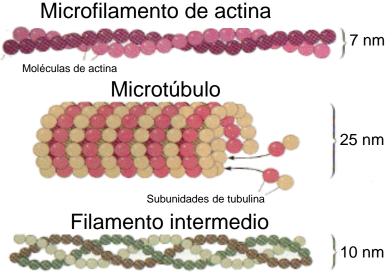
Estructuras de resistencia a factores ambientales que presentan algunos procariotes, como Azotobacter o Anabaena, no son tan resistentes como las endosporas y presentan una actividad metabólica apreciable.



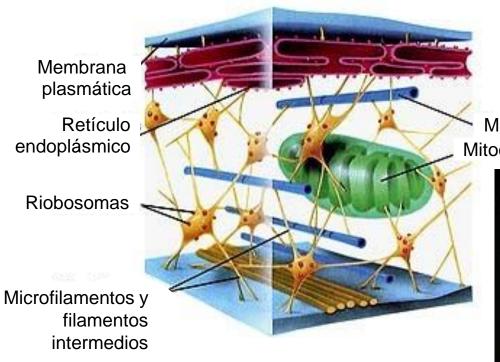

QUISTES



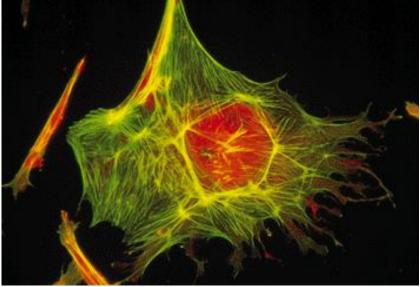
Estructuras de resistencia a factores ambientales que presentan los Eucariotes, particularmente los protozoarios. Un estado de latencia que les permite soportar condiciones desfavorables.


CITOESQUELETO

Estructura exclusiva de células eucariotes, formada por microtúbulos y microfilamentos de proteínas.


Permiten a la célula la movilización de organelos internos como los cloroplastos. También participa en los procesos de división celular junto con el centriolo y el huso.

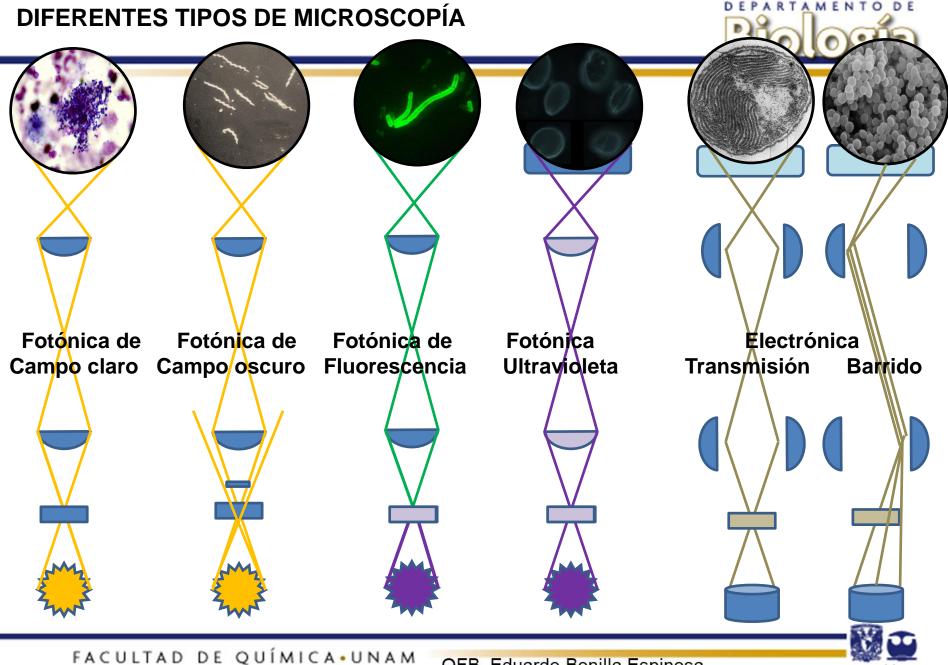
Interviene en la deformación del citoplasma y la membrana citoplásmica para producir pseudópodos en amibas.



CITOESQUELETO

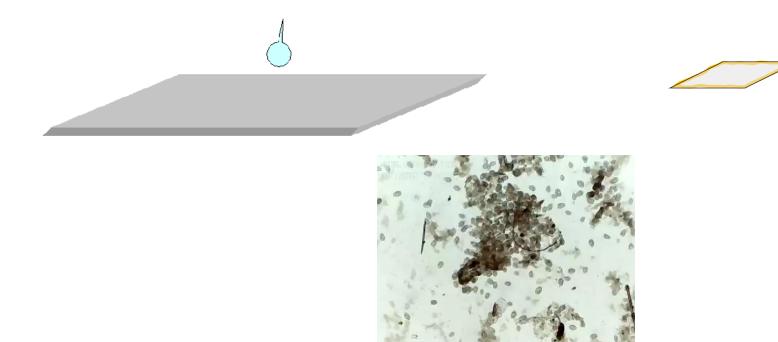
Microtúbulo Mitocondria

ESTUDIO


02.7)

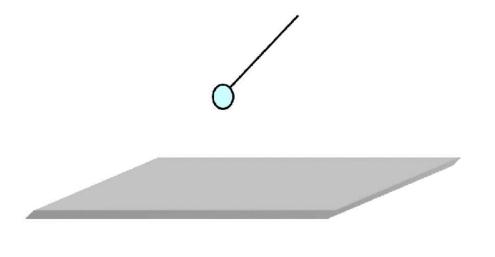
Características generales de los diferentes tipos de microscopía

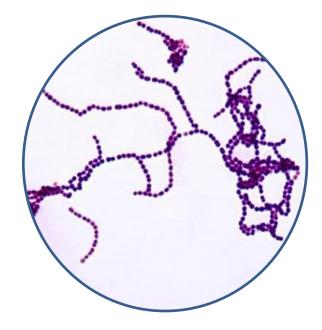
Tipo de Microscopía	Ampliación máxima útil	Aspecto de la muestra	Aplicaciones útiles
Campo claro	1 000	Especímenes con o sin tinción	Aspectos morfológicos gruesos de bacterias, levaduras, mohos, algas y protozoarios
Campo oscuro	1 000	Generalmente sin teñir aparecen brillantes en fondo oscuro	Para microorganismos que tengan aspectos morfológicos característicos (espiroquetas)
Ultravioleta	1 000 a 2000	No se ve directamente, la imagen se observa en monitor	Diferenciación de componentes celulares de acuerdo a su absorción de luz U.V.
Fluoresencia	2 000	Brillante y coloreado	Diagnóstico, al utilizar marcadores específicos
Contraste de fases	1 000	Grados variables de brillo	Examen de células vivas de organismos grandes
Electrónico	200,000 a 400,000	No se ve directamente, la imagen se observa en monitor	Examen de virus y ultraestructura de las células microbianas



PREPARACIONES HÚMEDAS O EN FRESCO:

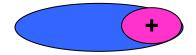
Son aquellas muestras en suspensión acuosa que se colocan sobre un portaobjetos y se protegen con cubreobjetos. Pueden realizarse en portaobjetos normal o en gota pendiente.



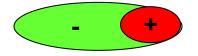


PREPARACIONES FIJAS:

Son aquellas muestras que se extienden sobre un portaobjetos (frote), dejándose secar y posteriormente se fijan por métodos físicos o químicos.

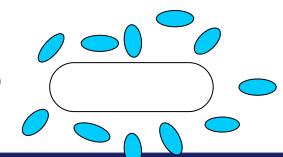


COLORANTES:



Sustancias químicas que presentan color, que pueden ser bastantes complejos en su estructura, clasificándose en trifenilmetano, oxacina y de tiacina.

También se pueden clasificar en ácidos, básicos, neutros en función de la carga que presenta el grupo que imparte el color.



Colorante	Carga	Ejemplo
Ácido	aniónico	eosina
Básico	catiónico	azul de metileno
Neutro	ácida y básica	eosina azul de metileno

Las reacciones son del tipo:

Bacteria(-) Na(+) + Azul de metileno(+) Cl(-)

Bacteria(-) Azul de metileno(+) + Na(+)Cl(-)

TINCIONES:

Resultado de la aplicación de uno o más colorantes para obtener un contraste entre el objeto de interés y el resto de la muestra. Se pueden clasificar en:

Por afinidad del colorante con la estructura

Directas o positivas: Aquellas que el colorante se une directamente con la estructura de estudio.

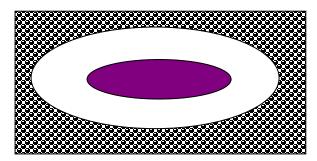
Negativas o indirectas: En donde la estructura a observar no adquiere color y generalmente se observa refringente.

Por cantidad de colorantes y reactivos

Simples son aquellas que se les agrega un solo colorante.

Con mezclas: compuestas o complejas, cuando se usan dos o más colorantes o reactivos.

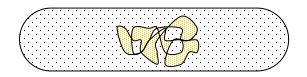
Por aplicación o uso

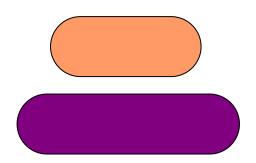

Selectivas cuando con uno o más colorantes se pone de manifiesto un organelo.

Diferenciales las que ponen de manifiesto diferencias químicas entre células con similar morfología.

CARACTERÍSTICAS DE LAS TINCIONES:

Directa o positiva, simple

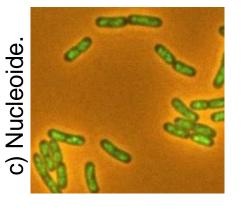

Selectiva, indirecta o negativa, compleja (tinta china afuera, cristal violeta en la célula, cápsula sin color)

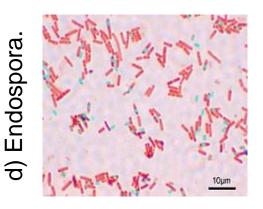

Selectiva, indirecta o negativa, simple (la célula toma el colorante y la endospora está incolora)

Selectiva, directa o positiva, compleja (endospora con color del primer colorante, la célula toma el segundo)

Selectiva, directa o positiva, compleja, (material genético de procariote)

Diferencial, directa o positiva, compleja (Gram)

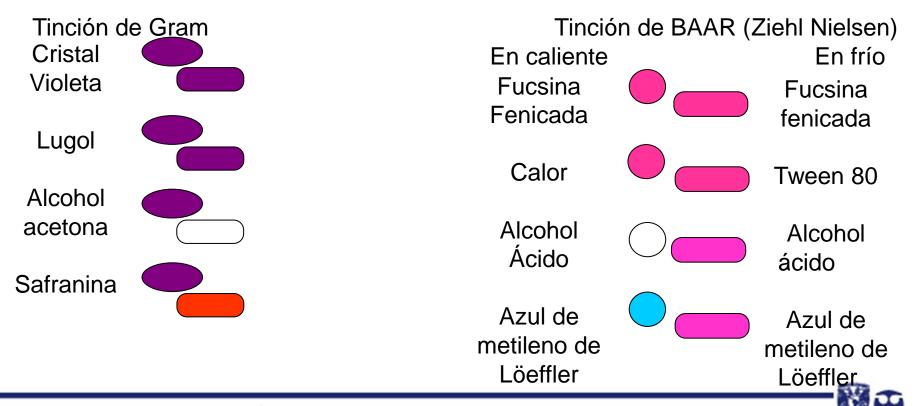

TINCIONES SELECTIVAS:


Pueden teñirse directamente o de forma indirecta (negativa) los organelos de los microorganismos, en algunos casos se requiere de precipitar sobre la estructura sales para poder engrosarlas o se requiere de tratamientos largos para que el colorante reaccione.

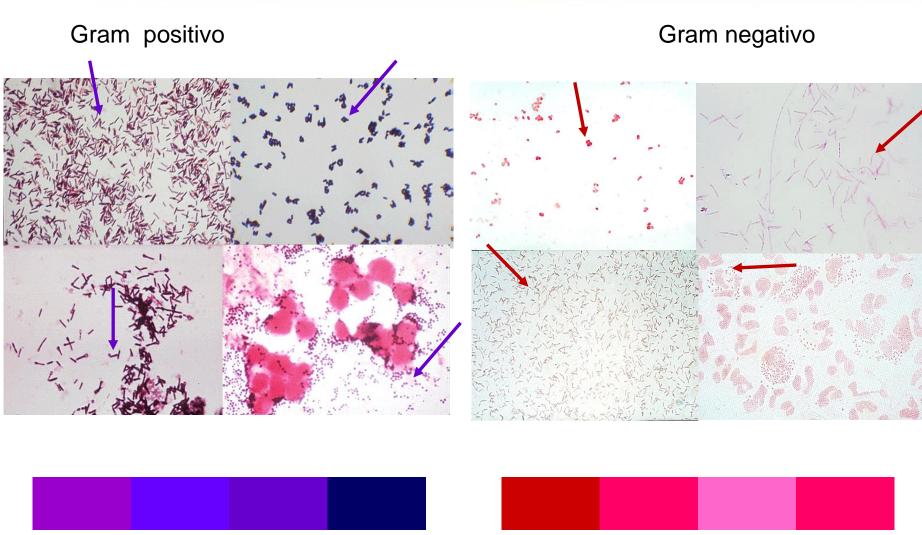
a) Cápsula.

b) Flagelo.

d) Endospora.

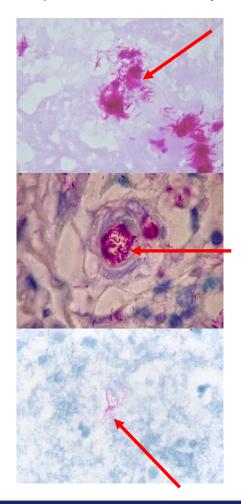


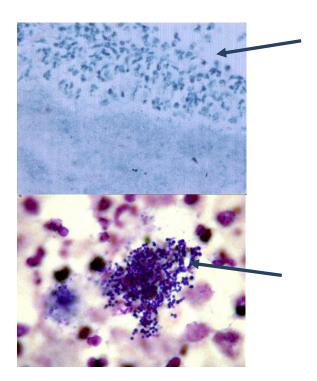
TINCIONES DIFERENCIALES:


Retienen un colorante, mismo que no pierden en cuanto se aplica el decolorante, y las otras bacterias toman el segundo colorante. Existen varios tipos como las siguientes:

- •Gram. (Por la pared celular, diferencia de lípidos y petidoglucanos)
- •Ziehl Neelsen. Bacilos Ácido Alcohol Resistentes. (Por la pared celular, ceras involucradas)
- Giemsa. Ricketsias. (Por características del citoplasma)

TINCION DE GRAM




TINCION DE ZIEHL NIELSEN

Bacilo ácido alcohol resistente (BAAR) Ziehl Nielsen positivo

Bacilo no ácido alcohol resistente (No BAAR) Ziehl Nielsen negativo

