Oxidación de los metales y propiedades periódicas (OMPP)

Pregunta a responder al final de la sesión:

¿Cuál de las propiedades periódicas de los elementos varía igual que su tendencia a oxidarse?

OBJETIVO(S) ACADÉMICO(S)

Que el alumno reconozca las propiedades periódicas y su relación con la oxidación de un metal, mediante la observación y comparación de la reactividad de los metales.

Introducción

En esta práctica, para poder ordenar a varios metales según su tendencia a oxidarse, es necesario que seas capaz de distinguir claramente cuando **sí** hay reacción y cuando **no** la hay. Entre los fenómenos más comunes que ponen en evidencia que se está efectuando una reacción están: generación de burbujas que indican que se está produciendo un gas, formación de un precipitado, un cambio de color, etcétera.

REACTIVOS

Indicador universal	Sodio (Na)
Ácido clorhídrico (HCl) concentrado	Magnesio (Mg)
Ácido nítrico (HNO ₃) concentrado	Zinc (Zn)
Agua destilada	Plata (Ag)
Nitrato de plata (AgNO ₃)	Platino (Pt)

^{*}Ver Apéndice II

EQUIPO

Material por equipo

Pipeta volumétrica 1 mL	1	Piseta de agua	1
Tubo de ensaye 13x100	5	Espátula	1
Gradilla	1	Pinza para tubo de ensaye	2
Mechero Bunsen	1		

DESARROLLO EXPERIMENTAL Y CUESTIONARIO

IMPORTANTE: Debes realizar los experimentos y contestar las preguntas \underline{en} en que aparecen en el texto.

Tienes frente a ti cinco tubos de ensaye, conteniendo cada uno un trocito de un metal diferente (plata, platino, zinc, sodio y magnesio) y vas a probar su reactividad con respecto a su tendencia a oxidarse.

platino, zinc, sodio y magnesio) y vas a probar su reactividad con respecto a su tendencia a oxidarse.
1 A cada uno de los cinco tubos añade, <u>con mucho cuidado</u> , aproximadamente 1 mL de agua destilada. Separa el o los tubos en los que hubo reacción y anota a cuál o cuáles metales corresponden:
 a) En el tubo en el que se observe alguna reacción, acerca <u>rápidamente</u> la boca del tubo a la flama del mechero y anota tus observaciones b) ¿Qué color tiene el gas que se desprendió? c) Escribe completa y balanceada la ecuación de la reacción que se llevó a cabo
d) Al tubo donde hubo reacción, añade una gota de indicador universal para confirmar los productos de la reacción. e) Identifica a la especie oxidante (indicando específicamente al elemento):
2 A los tubos en los que no ha habido reacción, caliéntalos suavemente con el mechero. Selecciona el o los tubos en los que observaste algún cambio y toma nota del metal o metales de que se tratan:
a) Escribe completa y balanceada la ecuación de la reacción que tuvo lugar:
Adiciona a este último tubo una gota de indicador universal para confirmar los productos de la reacción.
b) Identifica a la especie oxidante (indicando específicamente al elemento):
3 A cada uno de los tubos en los que no ha habido reacción, deséchales el agua y agrégales con cuidado unas gotas de ácido clorhídrico concentrado. Aparta el o los tubos en los que sí hubo reacción y registra tus observaciones:

a)I	Escribe com	ipleta y	balance	ada la ec	uación de	la reac	ción co	orrespond	liente en	este	caso:
b)	Establece	cuál	es la	especie	oxidante	(indic	ando	específic	camente	al	elemento):
4 IMPOI clorhídrico iones clorur un poco de lavar con ag	que contien o por compagua destila gua destilad	nen y e <u>oleto.</u> Pa ada y un <u>la,</u> hasta	enjuágalo ara esto, na gota c a que es	os muy b cuando le disoluc ta prueba	oien con considere ción de ni dé negat	agua de s que lo trato de iva. Ent	estilada os tubo plata. tonces	a, <u>asegur</u> os están li Si aparec , y sólo h	ándote q Ibres de c ce una tur	ue e cloru rbide	liminas los ros, agrega ez, <u>vuelve a</u>
a)	¿Qué	C	olor	presen	ta e	1	gas	que	se		desprende?
b)	¿Por qué el	ácido c	clorhídri	co no oxi	dó a la pl	ata y el	ácido	nítrico sí	?		
c)]	Escribe con	npleta y	balance	eada la ec	cuación de	e la reac	cción e	ntre la pl	ata y el á	cido	nítrico:
d) NOTA: Co de Pt al pro		-				-					tu trocito
Aná	llisis global	de los	resultac	dos							
1 (oxidación:	Ordena los	cinco e	lemento	s estudia	idos, del i	más fác	ilment	e oxidab	le al más	s res	istente a la
2 [Dispón a est	tos meta	ales, del	reductor	más fuert	e al red	luctor 1	más débil	:		
3 opropiedades elabora una		s (ener	gía de	ionizació	n, electro	onegativ	vidad	y radio	iónico);	post	
4 A ¿Cuál de es	Analiza las tas propieda			-				-	cas que s	e co	nsideraron.

- **5.-** La tendencia a la oxidación se cuantifica mediante el potencial rédox (E°). Busca entre los apéndices los valores de E° para los pares M^{n+}/M° .
- **6.-** Grafica los valores de E° contra los de las propiedades periódicas que consultaste en la pregunta 3. ¿Cuál propiedad da lugar a la mejor correlación?
 - 7.- ¿Con qué otros cinco metales pudo haberse realizado esta práctica?
 - **8.- Torito:** ¿Por qué es tan importante lavar exhaustivamente con agua destilada a los dos últimos metales antes de agregarles ácido nítrico?
- **9.-** Intenta incluir en la *mejor* gráfica de la pregunta 6, a todos los metales para los cuales encuentres las dos variables.

Pregunta adicional:

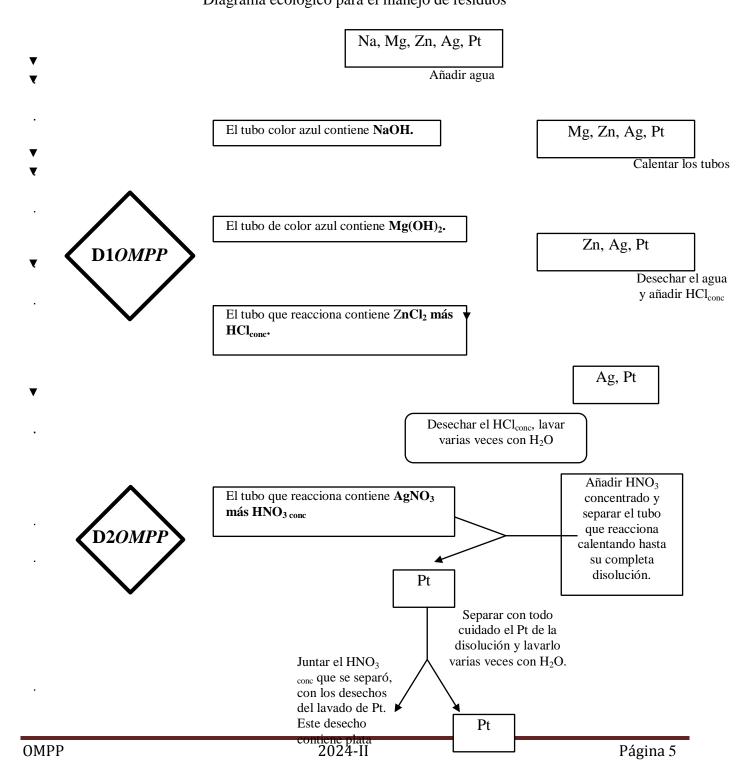
10.- Se tienen dos muestras, una de cobre ($E^{\circ} = 0.34 \text{ V}$) y otra de cadmio ($E^{\circ} = -0.40 \text{ V}$). A las dos se les añade ácido clorhídrico y sólo una de ellas reacciona. Di a qué elemento corresponde esta muestra y escribe completa y balanceada la ecuación para la reacción que se lleva a cabo.

Referencias bibliográficas

- 1. Rayner-Canham, G. *Química Inorgánica Descriptiva*, Pearson Educación, México 2000. ISBN 968-444-385-4.
- 2. Housecroft, C. E.; Sharpe, A. G. *Química Inorgánica*, 2ª Edición, Pearson Educación, México, 2006. ISBN 9788420548470.
- 3. Wulfsberg, G. Principles of Descriptive Inorganic Chemistry. University Science Books, Mill Valley, California, 1991.
- 4. Atkins, P.; Overtone, T.; Rourke, J.; Weller, M. *Química Inorgánica*, 4ª Edición, McGraw Hill, México, 2008. ISBN 970106531x.

Apéndice I: Conocimientos previos.

El estudiante debe conocer las propiedades periódicas de los elementos, el concepto de electronegatividad, oxidación, reductor, oxidante, pH, acidez.


Apéndice II: Preparación de reactivos

Los reactivos calidad R. A. se usan sin diluir se requieren concentrados.

Apéndice III: Disposición de residuos

OXIDACIÓN DE LOS METALES Y PROPIEDADES PERIÓDICAS. (OMPP)

Diagrama ecológico para el manejo de residuos

Recomendaciones:

- 1) El residuo **D10MPP** Son residuos que contienen especies químicas que, por sus características, no representan un daño a la salud. Se hace referencia a especies como Na⁺, K⁺, Zn²⁺, NO₃⁻, CO₃²⁻, Cl⁻, etcétera. Este grupo de residuos requiere solamente ser neutralizado y desechado a la tarja. El pH se mide con un potenciómetro (pH'metro) y debe estar entre 6 y 8.
- 2) Al residuo **D20MPP** se neutralizará, se satura con NaCl y recuperará el sólido formado (AgCl) por filtración. El sólido se someterá a un proceso para utilizarlo nuevamente en el laboratorio. Evita contaminarlo.

Anexo1

Potenciales estándar de reducción

	<i>E</i> ° (V)
Reacción	L (V)
$2H^+ + 2e^- \leftrightarrow H_2(g)$	0.0000
$2H_2O + 2e^- \leftrightarrow H_2(g) + 2OH^-$	-0.8277
$NO_3^- + 2H^+ + 1e^- \leftrightarrow NO_2 + H_2O$	0.80
$2NO_3^- + 4H_2O^+ + 3e^- \leftrightarrow NO(g) + 6H_2O$	+0.955
$Ag^{+} + e^{-} \leftrightarrow Ag$ $Al^{3+} + 3e^{-} \leftrightarrow Al$	0.7996
$Al^{3+} + 3e^{-} \leftrightarrow Al$	-1.677
Au ⁺ + 1e ⁻ ↔ Au	1.68
$Be^{2+} + 2e^{-} \leftrightarrow Be$	-1.70
$Br_2 + 2e^- \leftrightarrow 2 Br^-$	1.06
$Ca^{2+} + 2e^{-} \leftrightarrow Ca$	-2.76
$\operatorname{Cd}^{2+} + 2e^{-} \leftrightarrow \operatorname{Cd}$	-0.4026
$Cl_2(g) + 2e^- \leftrightarrow 2Cl^-$	1.3583
$\text{Co}^{2+} + 2\text{e}^{-} \leftrightarrow \text{Co}$	-0.28
$\operatorname{Cr}^{2+} + 2e^{-} \leftrightarrow \operatorname{Cr}$	-0.557
$Cu^{2+} + 2e^{-} \leftrightarrow Cu$	0.3402
$Cu^{2+} + 1e^{-} \leftrightarrow Cu^{+}$	0.158
$Fe^{2+} + 2e^{-} \leftrightarrow Fe$	-0.4402
$Fe^{3+} + 3e^{-} \leftrightarrow Fe$	-0.036
$Fe^{3+} + e^{-} \leftrightarrow Fe^{2+}$	0.770
$I_2 + 2e^- \leftrightarrow 2 I^-$ $Li^+ + 1e^- \leftrightarrow Li^\circ$	0.53
$Li^+ + 1e^- \leftrightarrow Li^\circ$	-3.045
$Mg^{2+} + 2e^{-} \leftrightarrow Mg$	-2.375
$Mn^{2+} + 2e^{-} \leftrightarrow Mn$	-1.029
$Na^+ + e^- \leftrightarrow Na$	-2.7109
$Ni^{2+} + 2e^- \leftrightarrow Ni$	-0.23
$Pb^{2+} + 2e^{-} \leftrightarrow Pb$	-0.126
$Pd^{2+} + 2e^{-} \leftrightarrow Pd$	0.83
$Pt^{2+} + 2e^{-} \leftrightarrow Pt$	1.2
$PtCl_4^{2-} + 2e^- \leftrightarrow Pt + 4Cl^-$	0.73
$\operatorname{Sc}^{3+} + 3e^{-} \leftrightarrow \operatorname{Sc}$	-2.08
$\operatorname{Sn}^{2+} + 2e^{-} \leftrightarrow \operatorname{Sn}$	-0.1364
$Ti^{2+} + 2e^- \leftrightarrow Ti$	-1.63
$V^{2+} + 2e^- \leftrightarrow V$	-1.2
$Zn^{2+} + 2e^{-} \leftrightarrow Zn$	-0.7628

<u>Anexo 2</u> Primera (I) y segunda (II) energías de ionización (MJ/mol)

Z ^a	Elemento	I	II	Z	Element	I	II
					0		
1	Н	1.3120		52	Те	0.8693	1.79
2	He	2.3723	5.2504	53	I	1.0084	1.8459
3	Li	0.5203	7.2981	54	Xe	1.1704	2.046
4	Be	0.8995	1.7571	55	Cs	0.3757	2.23
5	В	0.8006	2.4270	56	Ba	0.5029	0.96526
6	C	1.0864	2.3526	57	La	0.5381	1.067
7	N	1.4023	2.8561	58	Ce	0.582	1.047
8	О	1.3140	3.3882	59	Pr	0.523	1.018
9	F	1.6810	3.3742	60	Nd	0.530	1.034
10	Ne	2.0807	3.9523	61	Pm	0.536	1.052
11	Na	0.4958	4.5624	62	Sm	0.543	1.068
12	Mg	0.7377	1.4507	63	Eu	0.547	1.085
13	Al	0.5776	1.8167	64	Gd	0.592	1.17
14	Si	0.7865	1.5771	65	Tb	0.564	1.112
15	P	1.0118	1.9032	66	Dy	0.572	1.126
16	S	0.9996	2.251	67	Но	0.581	1.139
17	Cl	1.2511	2.297	68	Er	0.589	1.151
18	Ar	1.5205	2.6658	69	Tm	0.5967	1.163
19	K	0.4189	3.0514	70	Yb	0.6034	1.175
20	Ca	0.5898	1.1454	71	Lu	0.5235	1.34
21	Sc	0.631	1.235	72	Hf	0.654	1.44
22	T	0.658	1.310	73	Ta	0.761	
23	V	0.650	1.414	74	W	0.770	
24	Cr	0.6528	1.496	75	Re	0.760	
25	Mn	0.7154	1.5091	76	Os	0.84	
26	Fe	0.7594	1.561	77	Ir	0.88	
27	Co	0.758	1.646	78	Pt	0.87	1.7911
28	Ni	0.7367	1.7530	79	Au	0.8901	1.98
29	Cu	0.7455	1.9579	80	Hg	1.0070	1.8097
30	Zn	0.9064	1.7333	81	Tl	0.5893	1.9710
31	Ga	0.5788	1.979	82	Pb	0.7155	1.4504
32	Ge	0.7622	1.5372	83	Bi	0.7033	1.610
33	As	0.944	1.7978	84	Po	0.812	
34	Se	0.9409	2.045	85	At		
35	Br	1.1399	2.10	86	Rn	1.0307	
36	Kr	1.3507	2.3503	87	Fr		
37	Rb	0.4030	2.633	88	Ra	0.5094	0.97906
38	Sr	0.5495	1.0643	89	Ac	0.49	1.17
39	Y	0.616	1.181	90	Th	0.59	1.11

40	Zr	0.660	1.267	91	Pa	0.57	
41	Nb	0.664	1.382	92	U	0.59	
42	Mo	0.6850	1.558	93	Np	0.60	
43	Тс	0.702	1.472	94	Pu	0.585	
44	Ru	0.711	1.627	95	Am	0.578	
45	Rh	0.720	1.744	96	Cm	0.581	
46	Pd	0.805	1.875	97	Bk	0.601	
47	Ag	0.7310	2.074	98	Cf	0.608	
48	Cd	0.8677	1.6314	99	Es	0.619	
49	In	0.5583	1.8206	100	Fm	0.627	
50	Sn	0.7086	1.4118	101	Md	0.635	
51	Sb	0.8316	1.595	102	No	0.642	

^a Z = número atómico.

10 11 12 13 1 2 7 14 15 16 **17** 18 ΙA III B IV B VBVIB VIIB VIII VIII VIII ΙB II B III A IV A VA VIA VIIA VIIIA

Pauling Paul	Н			No. a			15 _	219	▼ □		~~ ! :: al.	- d						2 He
Li Be 6.941 9.0122			71	NO. a	atomico))			gativida	au	- 204	2 55	204	0 244	0 200	4.0026
10.81 12.011 14.007 15.999 18.998 11 0.93 12 1.31 13 1.61 14 19 15 2.19 16 258 17 3.16 18 18 18 18 18 18 18	_	I -					I		P	auiiiig			_	_	-	_		Ne
11 0.93 12 1.31 1.81 1.81 1.91							30.9	97	—	Macaa	+ómica		_			_	_	20.180
Na Mg 22.990 24.305 Na Mg 22.990 24.305			-							IVIdSd d	tomica	1						
22.990															-	-		Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 39.098 40.078 44.956 47.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.38 69.723 72.630 74.922 78.97 79.904 37 0.82 38 0.95 39 1.22 40 1.33 41 1.6 42 2.16 43 1.9 44 2.2 45 2.28 46 2.2 47 1.93 48 1.69 49 1.78 50 1.80 51 2.05 52 1.5 53 2.66 2 47 1.93 48 1.69 49 1.78 50 1.80 51 2.05 52 1.5 53 2.66 2 4 1.07.87 112.41 114.82 118.71 121.76 127.60 126.90 126.90													26.982	28.085	30.974	32.06	35.45	39.95
39.098	19 0	0.82 20 1.	0 21 1.36	22 1.54	23 1.63	24 1.66	25 1.55	26 1.83	27 1.88	28 1.91	29 1.9	30 1.65	31 1.81	32 2.01	33 2.18	34 2.55	35 2.96	36 3.0
37 0.82 38 0.95 39 1.22 40 1.33 41 1.6 42 2.16 43 1.9 44 2.2 45 2.28 46 2.2 47 1.93 48 1.69 49 1.78 50 1.80 51 2.05 52 1.5 53 2.66 9 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 85.468 87.62 88.906 91.224 92.906 95.95 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 55 0.79 56 0.89	K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 85.468 87.62 88.906 91.224 92.906 95.95 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 55 0.79 56 0.89 * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At 132.91 137.33 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.36 207.20 208.98 (209) (210) 87 0.7 88 0.9 ** Ku Ha 105 Ku Ha 105 Ha 104 105 Ha 104 105 Ha 104 105 104 105 104																		83.798
85.468 87.62 88.906 91.224 92.906 95.95 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 55 0.79 56 0.89	-	0.82 38 0.9	5 39 1.22	40 1.33	41 1.6	42 2.16	43 1.9	44 2.2	45 2.28	46 2.2	47 1.93	48 1.69	49 1.78	50 1.80	51 2.05	52 1.5	53 2.66	54 2.60
55 0.79 56 0.89																		
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At 132.91 137.33 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.36 207.20 208.98 (209) (210) Fr Ra Ku Ha Color Ku Ha											_						_	Xe
132.91 137.33 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.36 207.20 208.98 (209) (210) 104 105 104 105 104 105 10	85.46	68 87.62	88.906	91.224	92.906	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
87 0.7 88 0.9 Fr Ra	85.46 55 0	87.62 0.79 56 0.8	88.906	91.224 72 1.3	92.906 73 1.5	95.95 74 2.36	(98) 75 1.9	101.07 76 2.2	102.91 77 2.2	106.42 78 2.28	107.87 79 2.54	112.41 80 2.0	114.82 81 1.6	118.71 82 1.87	121.76 83 2.02	127.60 84 2.0	126.90 85 2.2	131.29 86
Fr Ra ** Ku Ha (223) 226.03 (261) (260)	85.46 55 0 Cs	68 87.62 0.79 56 0.8 Ba	88.906 9 *	91.224 72 1.3 Hf	92.906 73 1.5 Ta	95.95 74 2.36 W	(98) 75 1.9 Re	101.07 76 2.2 Os	102.91 77 ^{2.2} Ir	106.42 78 2.28 Pt	107.87 79 2.54 Au	112.41 80 2.0 Hg	114.82 81 1.6 Tl	118.71 82 1.87 Pb	121.76 83 2.02 Bi	127.60 84 2.0 Po	126.90 85 2.2 At	131.29 86 Rn
(223) 226.03 (261) (260)	85.46 55 0 Cs 132.9	68 87.62 0.79 56 0.8 Ba 91 137.33	88.906	91.224 72 1.3 Hf	92.906 73 1.5 Ta	95.95 74 2.36 W	(98) 75 1.9 Re	101.07 76 2.2 Os	102.91 77 ^{2.2} Ir	106.42 78 2.28 Pt	107.87 79 2.54 Au	112.41 80 2.0 Hg	114.82 81 1.6 Tl	118.71 82 1.87 Pb	121.76 83 2.02 Bi	127.60 84 2.0 Po	126.90 85 2.2 At	131.29 86
	85.46 55 0 Cs 132.9	68 87.62 0.79 56 0.8 Ba 91 137.33 0.7 88 0.8	88.906 9 *	91.224 72 1.3 Hf 178.49 104	92.906 73 1.5 Ta 180.95 105	95.95 74 2.36 W	(98) 75 1.9 Re	101.07 76 2.2 Os	102.91 77 ^{2.2} Ir	106.42 78 2.28 Pt	107.87 79 2.54 Au	112.41 80 2.0 Hg	114.82 81 1.6 Tl	118.71 82 1.87 Pb	121.76 83 2.02 Bi	127.60 84 2.0 Po	126.90 85 2.2 At	131.29 86 Rn
	85.46 55 0 Cs 132.9 87 Fr	68 87.62 0.79 56 0.8 6 Ba 91 137.33 0.7 88 0 Ra	88.906 9 *	91.224 72 1.3 Hf 178.49 104 Ku	92.906 73 1.5 Ta 180.95 105 Ha	95.95 74 2.36 W	(98) 75 1.9 Re	101.07 76 2.2 Os	102.91 77 ^{2.2} Ir	106.42 78 2.28 Pt	107.87 79 2.54 Au	112.41 80 2.0 Hg	114.82 81 1.6 Tl	118.71 82 1.87 Pb	121.76 83 2.02 Bi	127.60 84 2.0 Po	126.90 85 2.2 At	131.29 86 Rn
4.41 4.42 4.42 4.44 4.47 4.47 4.21 4.22 4.24 4.25	85.46 55 0 Cs 132.9 87 Fr	68 87.62 0.79 56 0.8 6 Ba 91 137.33 0.7 88 0 Ra	88.906 9 *	91.224 72 1.3 Hf 178.49 104 Ku	92.906 73 1.5 Ta 180.95 105 Ha	95.95 74 2.36 W	(98) 75 1.9 Re	101.07 76 2.2 Os	102.91 77 ^{2.2} Ir	106.42 78 2.28 Pt	107.87 79 2.54 Au	112.41 80 2.0 Hg	114.82 81 1.6 Tl	118.71 82 1.87 Pb	121.76 83 2.02 Bi	127.60 84 2.0 Po	126.90 85 2.2 At	131.29 86 Rn
	85.46 55 0 Cs 132.9 87 Fr (223	68 87.62 0.79 56 0.8 Ba 137.33 0.7 88 0 Ra 226.03	88.906 9 *	91.224 72 1.3 Hf 178.49 104 Ku (261)	92.906 73 1.5 Ta 180.95 105 Ha (260)	95.95 74 2.36 W 183.84	(98) 75 1.9 Re 186.21	101.07 76 2.2 Os 190.23	102.91 77 2.2 Ir 192.22	106.42 78 2.28 Pt 195.08	107.87 79 2.54 Au 196.97	112.41 80 2.0 Hg 200.59	114.82 81 1.6 Tl 204.36	118.71 82 1.87 Pb 207.20	121.76 83 2.02 Bi 208.98	127.60 84 2.0 Po (209)	126.90 85 2.2 At (210)	131.29 86 Rn (222)
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 138.91 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.05 1	85.46 55 0 Cs 132.9 87 Fr (223	58 87.62 0.79 56 0.8 Ba 91 137.33 0.7 88 0 Ra 226.03	88.906 9 * 9 **	91.224 72 1.3 Hf 178.49 104 Ku (261)	92.906 73 1.5 Ta 180.95 105 Ha (260)	95.95 74 2.36 W 183.84	(98) 75 1.9 Re 186.21	101.07 76 2.2 Os 190.23	102.91 77 2.2 Ir 192.22	106.42 78 2.28 Pt 195.08	107.87 79 2.54 Au 196.97	112.41 80 2.0 Hg 200.59	114.82 81 1.6 TI 204.36	118.71 82 1.87 Pb 207.20	121.76 83 2.02 Bi 208.98	127.60 84 2.0 Po (209)	126.90 85 2.2 At (210)	131.29 86 Rn (222)

Las masas están actualizadas conforme a la INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (IUPAC) con fecha de diciembre del 2018, www.iupac.org.

1.3 96

Am

(243)

^{1.3} 97

Bk

(247)

Cm

(247)

Cf

(251)

100

Fm

(257)

Es

(252)

101

Md

(258)

102

No

(259)

103

Lw

(262)

OMPP 2024-II Página 10

1.28 95

Pu

(244)

1.38 93

Np

(237)

U

238.03

1.5 92

Pa

231.04

Th

232.04

**

Ac 227.03