Nombre:	Fecha:
Nombre.	recha.

- 3. ANÁLISIS COMPOSICIONAL.
- G) DETERMINACIÓN DEL APORTE ENERGÉTICO EMPLEANDO BOMBA CALORIMÉTRICA.

ESTANDARIZACIÓN DEL CALORÍMETRO

Tiempo (s)	Temperatura (°C)

Grafique el alza de temperatura para el calorímetro en función del tiempo e identifique los puntos a, b y c, de acuerdo con la Figura 1 página 28.

CÁLCULOS:

Estandarización del calorímetro

Muestra estándar: ácido benzóico

$$W = \frac{Hm + e1 + e3}{T}$$

Donde:

W = energía equivalente del calorímetro (Cal/°C).

H = calor de combustión de la muestra estándar de ácido benzóico (Cal/g ácido benzóico).

m = masa de la muestra estándar (g).
 e1 = corrección en calorías del calor de formación de ácido nítrico (HNO₃) (Cal).
 e3 = corrección en calorías para el calor de combustión del alambre de fusible (Cal).
 T = alza de temperatura neta corregida (°C).

H =
m =
e1 =
e3:
A1 = Alambre inicial (cm)
A2 = Alambre final (cm)
e3 = (A1 – A2) * 2.3 =

Nombre:	Fecha:	

3. ANÁLISIS COMPOSICIONAL.

G) DETERMINACIÓN DEL APORTE ENERGÉTICO EMPLEANDO BOMBA CALORIMÉTRICA ANALISIS DE LA MUESTRA

Tiempo (s)	Temperatura (°C)

Grafique el alza de temperatura para el calorímetro en función del tiempo e identifique los puntos a, b y c, de acuerdo con la Figura 1 página 28.

Calor de combustión de la muestra

$$H = \frac{TW - e1 - e2 - e3}{m}$$

Donde:

H = calor de combustión de la muestra analizada (Cal/q).

T = alza de temperatura neta corregida (°C).

T = Tc-Ta-r1(b-a)-r2(c-b)

Donde:

Tc = temperatura en el momento c (ver gráfica) (°C).

Ta = temperatura en el momento del disparo (°C).

r1 = tasa (°C/min) a la cual la temperatura estaba subiendo durante el periodo de 5 min antes del disparo.

b = tiempo (min) en que la temperatura alcanza 60% del alza total.

a = tiempo (min) del disparo.

r2 = tasa (°C/min) a la cual la temperatura estaba subiendo durante el periodo de 5 min después del punto

c = hora del inicio del periodo (después del alza de temperatura) en la cual la tasa de cambio de temperatura se convierte en una constante.

W = energía equivalente del calorímetro (Cal/°C), determinada dentro de la estandarización con ácido benzóico.

e1 = corrección en calorías del calor de formación de ácido nítrico (HNO₃) (Cal).

e2 = corrección en calorías del calor de formación de ácido sulfúrico (H_2SO_4) (Cal).

e3 = corrección en calorías para el calor de combustión del alambre de fusible (Cal).

m = masa de la muestra (g).

LABORATORIO DE ALIMENTOS I

Semestre 2024-2

T =

Punto a: tiempo _____ Temperatura_____

Punto b: tiempo _____ Temperatura_____

Punto c: tiempo _____ Temperatura_____

e1 = _____

e2 = _____

e3:

A1 = Alambre inicial (cm) _____

A2 = Alambre final (cm) _____

e3 = (A1 – A2) * 2.3 = _____

m = _____

CÁLCULOS:

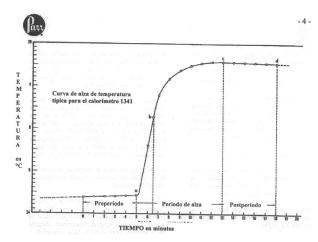


Figura 1. Curva de alza de temperatura

LABORATORIO DE ALIMENTOS I

Semestre 2024-2