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ABSTRACT

We review recent studies of organic molecule formation in dense molecular clouds and in comets. We
summarise the known organic inventories of molecular clouds and recent comets, particularly Hale-Bopp.
The principal chemical formation pathways involving gas phase reactions, as well as formation by catalytic
reactions on grain surfaces or through dust fragmentation, are identified for both dense clouds and cometary
comae. The processes leading to organic molecules with known biological function, carbon chains, deuterium
fractionation, HNC and S-bearing compounds are described. Observational searches for new interstellar
organics are outlined and the connection between observed interstellar organics and those detected in comets
Hale-Bopp and Hyakutake are discussed.

INTRODUCTION
The birth sites of solar-mass stars and their planetary systems are dense interstellar clouds. Such clouds

provide the building blocks, in the form of interstellar molecules and dust, for the formation of planets,
comets, asteroids, and other macroscopic bodies in protostellar disks (Ehrenfreund & Charnley 2000; Irvine
et al. 2000; Lunine et al. 2000). These clouds are the site of an extremely active and complex chemistry;
to date over 100 molecules have been detected in them. Many of these molecules are also observed in
protoplanetary disks and comets. A central question in the fields of astrochemistry and astrobiology is
how much of the material present in primitive bodies, such as comets and asteroids, is pristine interstellar
material? In other words, to what extent does the chemical inventory of these objects and the planets reflect
chemical processing, firstly in the collapsing cloud, and subsequently in the protoplanetary disk (e.g. van
Dishoeck & Blake 1998; Langer et al. 2000)?

Answering this question is of fundamental concern to two areas of research. Firstly, chemical abundances,
together with isotopic and ortho-para ratios, are sensitive tracers of the molecule formation conditions and so
differences between the chemical inventory of the interstellar medium (ISM) and the solar system can be used
to constrain models of low-mass star formation, many aspects of which are not well understood. Secondly,
the molecules in the early solar nebula provided the seed from which life eventually formed. It is thought
that a great deal of organic material was deposited on the young Earth by cometary and asteroid impacts
(Chyba et al. 1990). Many of the organic molecules detected in dense interstellar clouds have important
functions in terrestrial biochemistry. The presence of extraterrestrial amino acids in meteorites (e.g. Cronin
& Pizzarello 1983) shows that extremely complex molecules are able to form in space. In order to assess the
implications for life elsewhere in the universe, we need to understand if such complexity is a general feature
of interstellar and/or protoplanetary disk chemistry, or if these molecules arose due to specific conditions
in our solar system. We can obtain clues to the above question by comparing observations of comets –
thought to be the most pristine objects in our solar system – with those of protoplanetary disks, protostellar
cores, and interstellar clouds (Ehrenfreund et al. 1997; Ehrenfreund 2000; Ehrenfreund & Charnley 2000;
Bockelée-Morvan et al. 2000; Irvine et al. 2000).
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Table 1. Representative compositions of the gas in a cold molecular cloud (L134N), protostellar ices
(NGC7538:IRS9), protostellar hot core gas (Sgr B2(N)), and in a cometary coma (Hale-Bopp).

Molecule L134N NGC7538:IRS9 Sgr B2(N) Hale-Bopp

H2O < 3 100 > 100 100
CO 1000 16 1000 20
CO2 - 20 - 6-20
H2CO 0.25 5 > 0.005 1
CH3OH 0.04 5 2 2
NH3 2.5 13 - 0.7-1.8
CH4 - 2 - 0.6
C2H2 - <10 - 0.1
C2H6 - < 0.4 - 0.3
HCOOH 0.004 3 > 0.003 0.06
CH2CO <0.009 - 0.002 < 0.03
CH3CHO 0.008 - 0.002 0.02
c-C2H4O - - 0.001 -
CH3CH2OH - <1.2 0.01 < 0.05
CH3OCH3 - - 0.03 < 0.45
HCOOCH3 <0.02 - 0.02 0.06
CH3COOH - - 0.0008 -
CH2OHCHO - - 0.003 -
OCN− - 1 - -
HNCO - - 0.006 0.06-0.1
NH2CHO <0.001 - 0.002 0.01
HCN 0.05 - > 0.05 0.25
HNC 0.08 - > 0.001 0.04
CH3CN <0.01 - 0.3 0.02
CH3NC - - 0.015 -
HC3N 0.002 - 0.05 0.02
C2H3CN - - 0.6 -
C2H5CN - - 0.006 -
H2S 0.01 - - 1.5
OCS 0.02 0.05 >0.02 0.5
H2CS 0.008 - 0.2 0.02
SO 0.25 - 0.2 0.2-0.8
SO2 0.005 - 0.3 0.1

NOTES: Abundances for interstellar ices and cometary volatiles are normalized to H2O. Gaseous abundances for Sgr B2(N) and L134N

are normalized to CO. Original references for the abundances in L134N and NGC7538 appear in Charnley et al. (2001b). Values for Sgr

B2(N) and comet Hale-Bopp are taken from Nummelin et al. (2000) and Crovisier & Bockelée-Morvan (1999) respectively.

THE INTERSTELLAR-COMET CONNECTION
Table 1 compares the abundances of a number of molecules in a dark cloud, ices toward a protostar,

a star-forming ‘hot molecular core’ where ices have recently evaporated, and a cometary coma. Whilst
the analysis is complicated by factors such as the probable depletion of CO and CO2 in cometary ices
(Yabushita 1995), and the fact that some of the molecules in hot cores and comets are likely to be daughter
species formed via post-evaporation chemistry in the warm gas, it is clear that there are many fundamental
similarities between the different regions. However, there are also a number of differences between cometary
and interstellar abundances, which suggests that whilst solar system objects may consist of some purely
interstellar material, other constituents have undergone significant processing. It is also apparent that there
are substantial differences between molecular abundances in interstellar dark clouds and warm protostellar
regions. This can be explained in terms of surface chemistry occurring as atoms and molecules freeze out
onto dust grains in the cold cloud, followed by a complex gas-phase hot core chemistry which is initiated
when the grain mantles are evaporated by the nearby protostar. A similar chemistry is thought to occur
as material falls onto the disks surrounding low-mass stars, and the products will then refreeze and be
incorporated into cometesimals and planetesimals (Lunine et al. 2000). Therefore, it is clear that in order
to address the above question in a quantitative manner, we require a detailed understanding of the relevant
chemical reactions and physical processing that interstellar material experiences as it suffers the violent
passage from a cold dense cloud into a protoplanetary system.
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ORGANIC ASTROCHEMISTRY: OBSERVATIONS AND THEORY
Interstellar Medium
Cold Dark Clouds

The two most intensively studied dark clouds are TMC-1 and L134N (see Table 1 of Ehrenfreund &
Charnley 2000). Because of the low temperatures in these clouds, the chemistry is driven by exothermic
ion-molecule reactions, initiated by cosmic ray ionization. In general, chemical models are able to give
reasonable agreement with the observed abundances, although there remain problems with sulphuretted
molecules and carbon-chain species (e.g. Millar et al. 1997). It is also possible that grain surface chemistry
may contribute to the formation of molecules seen in dark clouds. Although these clouds are cold, a number
of possible non-thermal desorption mechanisms have been proposed to return material from grains to the
gas phase (e.g. Markwick et al. 2000); these proposals are motivated by the fact that in dense clouds one
would expect heavy elements to be almost totally depleted from the gas on timescales much less than the
estimated ages of the clouds (cf. Charnley et al. 2001a). The largest molecules observed in dark clouds are
linear carbon chain molecules, such as C8H and HC11N (e.g. Bell et al. 1997, 1999). However, the decline in
abundance with increasing chain length suggests that only a small fraction of interstellar carbon is locked
up in longer chains. Nevertheless, it is likely that a significant fraction of the carbon is in the form of large
aromatic molecules (see below). After atoms and molecules accrete onto grains to form ice mantles, it is
likely that the resulting ices are subsequently processed by UV photons and/or energetic cosmic ray impacts.
Laboratory experiments involving irradiation and radiolysis of interstellar ice analogs have demonstrated
that relatively simple ices can be processed into much more complex molecules such as ethanol, formamide,
carbonic acid, lactic acid, urea, and even larger molecules (Agarwal et al. 1985; Bernstein et al. 1995; Moore
& Hudson 1998). Greenberg (1998) has proposed that over the lifetime of a molecular cloud a substantial
fraction of the ice is converted into complex organic material, and that when planetary systems form this
material is eventually incorporated into comets.

Hot Molecular Cores
The first hot molecular cores to be discovered were the Hot Core and Compact Ridge sources in Orion-

KL, which are characterised by large abundances of small saturated molecules (e.g. NH3, H2O, CH3OH) in
warm (T ≥ 100K), dense (n ∼ 107 cm−3) gas, with anomalously high molecular D/H ratios for such high
temperatures (e.g. Blake et al. 1987). Many other hot cores have since been identified and studied, and
many molecules have been detected in them (see Table 1). The relation of many hot cores with ultracompact
H ii regions confirms that they are associated with the earliest stages of high-mass star formation (Kurtz
et al. 2000), and their composition is thought to result from the evaporation of interstellar ices by the
newly-formed protostars (Brown et al. 1988).

In addition to water, ammonia and methanol, hot cores also contain lesser abundances of larger saturated
species such as ethanol and ethyl cyanide, which are not detected in dark clouds. On the other hand, the
long unsaturated chain species which are observed in dark clouds, such as the larger of the cyanopolyynes,
are absent from hot cores. This is generally taken to be evidence for a limited surface chemistry occurring on
interstellar grains. The prevalence of hydrogen in the ISM, and the much greater mobility of H atoms on the
grain surface, ensures that hydrogenation is the principal reaction for surface molecules (Tielens & Hagen
1982); saturated alkanes and alcohols are the end result of H addition to the linear chain molecules observed
in dark clouds (e.g. Charnley 1997a). After the evaporation of the initial ices, a rich gas phase chemistry
can occur, and large abundances of new molecules can be formed (Charnley et al. 1992, 1995). Although
broadly similar, the detailed chemical composition of the gas is seen to vary between different hot cores. For
example, the Orion Hot Core appears to be enriched in N-bearing species, whereas the Compact Ridge has
enhanced levels of O-bearing species (Blake et al. 1987); similar spatial differentiation is seen in a number of
other sources (e.g. Nummelin et al. 2000). Charnley et al. (1992) showed that the N/O differentiation can
be explained by differing ammonia/methanol ratios in the original ices, since many of the large O-bearing
species are formed in the hot gas via reactions involving protonated methanol, and the presence of ammonia
suppresses the CH3OH+

2 abundance since NH3 acts as a sink for protons. Caselli et al. (1993) proposed a
mechanism to account for the initial differentiation in the ices, but recent observations suggest that NH3 and
CH3OH do in fact coexist in interstellar ices (Gibb et al. 2000). Rodgers & Charnley (2001a) showed that the
N/O differentiation may actually be an age/temperature effect, since ‘cool’ (T ≈ 100K) cores will eventually
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lose their NH3 after ∼ 105 yrs, whereas at higher temperatures endothermic reactions become rapid enough
to ensure that the NH3 abundance never drops substantially, and hence large abundances of O-rich organics
never evolve. Similar age/temperature effects may also be apparent in the sulphur chemistry, since the
presumed parent molecule, H2S, is processed into HS, S, S2, SO, SO2, H2CS, and CS, the peak abundances
of which depend on the core temperature (which controls the O i abundance) and age. Therefore, observed
abundance differences in sulphuretted hot core molecules may be used to constrain the age of the cores, and
place limits on the time-scale for this phase of the star formation process (Charnley 1997b)

Finally, an alternative explanation for the chemical variety amongst hot cores lies in the nature of the
source which drives the mantle evaporation and the gas phase chemistry. All the models discussed above
assume temporally constant temperatures and densities. This will be (roughly) appropriate for cores which
are heated radiatively, but it is likely that many hot cores have experienced the passage of shock waves
caused by the impact of protostellar outflows into the surrounding natal cloud material. In this case the
postshock temperature can reach values higher than 1000K (e.g. Draine & McKee 1993), this permits many
reactions which are endothermic, or have activation energy barriers, to occur. For example, Charnley &
Kaufman (2000) showed that the low abundances of CO2 observed in hot cores can be explained if these
regions are heated by shocks. Shock waves can also erode the refractory grain cores and the release of
silicon, observed to be highly depleted in cold clouds, is now understood to account for the presence of SiO
in star-forming regions (Schilke et al. 1997). These considerations ensure that a thorough understanding of
hot core chemistry requires detailed chemical modelling, since only when all possible gas phase production
routes have been investigated and ruled out, is it possible to infer that a particular molecule is a parent in
the original ice. Through this type of modelling, we can gradually build up a secure inventory of interstellar
ices (cf. Ehrenfreund & Charnley 2000). Comparison of inferred ice composition with that observed by the
ISO satellite will allow us to determine the processing that the ices undergo as they are irradiated and
evaporated by nearby protostars.

Comets
The modern view of comets began with the work of Whipple (1950), who proposed the ‘icy conglomerate’,

or ‘dirty snowball’ model of comet nuclei. Over the years this model has been refined, particularly after
the discovery in comet Halley of large, so-called ‘CHON’, organic particles (Kissel et al. 1986), and comets
are now known to consist of roughly equal parts by mass of ice (mainly water, with ∼ 10% CO and CO2),
inorganic refractories (mainly silicates), and organic refractories (CHON particles and other carbonaceous
material) (Greenberg 1998). The ices also contain trace amounts of other molecules at the ∼ 1% level or
less (Table 1) – although only a minor constituent of the comet as a whole, these species are very important,
since they can be used to trace the conditions under which comets were formed. The recent detection of
Argon in comet Hale-Bopp (Stern et al. 2000) is proof that this comet has undergone very little thermal
processing since its formation, as Ar sublimates at T ≈ 35K.

Based on their orbital characteristics it is possible to divide comets into two distinct populations: long-
and short-period comets. A more strict classification is based on the Tisserand invariant, T; comets with
T > 2 (short-period comets) are thought to originate from the Kuiper belt (located at a heliocentric distance
30 < rh ∼< 50 AU), whereas long-period comets come from the Oort cloud (rh ∼ 5 × 104 AU). The current
consensus is that Kuiper belt comets most probably formed near their current location, whereas Oort cloud
comets were formed somewhere in the giant planet region of the protosolar nebula (5 ∼< rh ∼< 30 AU), before
being ejected to their present position via gravitational interaction with these planets (Weissman 1999).
If this picture is correct, one would expect to see chemical differences between the two populations. This
indeed seems to be the case for carbon chains; A’Hearn et al. (1995) showed that short-period comets are
much more likely to be depleted in C2 and C3 than long-period comets. More recently, Mumma et al. (2000)
observed ethane in the short period comet Giacobini-Zinner, and showed that it too is depleted relative to
the long-period comet Hale-Bopp.

Our detailed knowledge of the molecular inventory of comets has been revolutionised in the past few years
by the apparitions of the bright comets Hyakutake and Hale-Bopp; many of the molecules listed in Table 1
were observed for the first time in Hale-Bopp (Bockelée-Morvan et al. 2000). The use of interferometers
allowed the first detailed maps to be made of the distributions of molecules in the coma (e.g. Blake et al. 1999;
Kuan et al. 2001a). Mapping of ions such as HCO+ also allowed the structure of the cometary ionosphere
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to be determined (e.g. Lovell et al. 1997), and showed that ion-molecule chemistry may be important in the
coma since, for example, HCO+ is formed from proton transfer to CO. The results of this mapping showed
that, in addition to a nuclear source, some molecules also appeared to have an extended source in the coma.
Although this was previously known to be the case for formaldehyde in comet Halley (Meier et al. 1993),
it is now known that CO, OCS, HCN, and HNC also had extended sources in Hale-Bopp. Various theories
exist to explain these distributions; it may be that these molecules are formed via photodissociation of some
unknown parent, or they may be sublimating directly from icy grains in the coma. Alternatively, as in
hot cores, these species and many others could possibly have been produced via post-sublimation gas-phase
chemistry occurring in the coma.

In order to quantitatively assess the potential for chemical reactions to alter the composition of the
coma, we have developed a model of the chemistry and physics in the coma (Rodgers & Charnley 2001d).
Despite the differences in the physical parameters and the molecular lifetimes, the chemistry taking place
in the coma is analogous in many ways to that which occurs in hot cores. However, because the physical
conditions change throughout the coma, it is necessary to calculate the hydrodynamics in tandem with the
chemistry and this ensures that the development of realistic coma models is a far more demanding task.
Briefly, the model simultaneously solves the conservation equations for abundances, mass, momentum and
energy appropriate for a steady spherical outflow. Endoergic chemical reactions driven by suprathermal H
atoms are included, along with all the important microphysical processes that determine the heating and
cooling in the coma. As described below, we have used this model to investigate possible production routes
for HNC and complex organics, as well as the potential of gas-phase chemistry to alter D/H ratios in the
coma (Rodgers & Charnley 1998, 2001b,c,d).

COMPLEX ORGANICS
Interstellar Medium

It has become clear in recent years that the ISM contains a large population of polycyclic aromatic
hydrocarbon (PAH) molecules (e.g. Léger & Puget 1984; Allamandola et al. 1985), with a typical size of
∼20–100 C atoms. PAHs are thought to account for ∼10% of the interstellar carbon budget, and are most
likely formed in the outflows of evolved stars (Frenklach & Feigelson 1989). However, it has not yet proved
possible to definitively identify specific PAH molecules. The largest positively-identified molecule thus far
detected in the ISM is HC11N (Bell et al. 1997). Yet, despite containing 13 atoms, structurally this is a
simple linear chain molecule. In terms of structure the most complex interstellar molecules are seen in hot
cores, where molecules such as ethanol, dimethyl ether, ethylene oxide, methyl formate, acetic acid, and
glycolaldehyde have been detected. The latter three molecules are isomers of each other, as are ethanol
and dimethyl ether. It is clear that any comprehensive theory of interstellar chemistry should be able to
explain the prevalence of some isomers over others. In the previous section we discussed how the molecular
abundances in hot cores are determined by two different chemical processes; surface chemistry in the cold
gas prior to the formation of the hot core, and hot post-evaporation gas phase chemistry. Here we briefly
describe a unified scheme to explain the observed molecular complexity in these regions (cf. Charnley 1997a,
2001; Charnley et al. 2001b).

Unconstrained grain surface reactions can potentially produce many molecules (e.g. Caselli et al. 1993),
however, such models cannot account for the specific abundances seen in hot cores. We therefore limit the
surface chemistry to consist of atomic addition reactions (one atom at a time), with the further constraint of
radical stability imposed on the intermediate organic radicals. This results in surface production of alcohols
and amines, although the existence of energy barriers for H addition to double and triple bonds may mean
not all molecules are fully reduced, resulting in some aldehydes, ketones, and nitriles. This scheme naturally
accounts for the methanol, formaldehyde, ethanol, ketene, acetaldehyde, vinyl cyanide, and ethyl cyanide
seen in hot cores (Charnley 1997a). It can also explain the existence of the ring molecule ethylene oxide
(c-C2H4O) via O atom addition to the C2H3 radical, which is formed when H atoms react with acetylene. If
instead of an O atom an N atom is added to C2H3, either methyl cyanide or vinylimine can result; however
a ring structure is also possible and this results in the azirines 1-H azirine ( H(c–C=N–C)H2 ) and 2-H
azirine ( H(c-C=C–NH)H ). Complete reduction via addition of two further H atoms will result in aziridine
( H2(C–NH–C)H2 ). We therefore searched for these molecules in several hot cores with the NRAO 12m
telescope (Kuan et al. 2001b; Charnley et al. 2001b). Figures. 1 and 2 show tentative detections of the
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Fig. 1. 2H-azirine 625–514 transition at 226.2 GHz. (a) Orion-KL. (b) Sgr B2(N).

Fig. 2. Aziridine 615–525 and 625–515 transitions (blended) at 236.0 GHz. (a) Orion-KL. (b) W51 e1/e2.

azaheterocycles 2-H azirine and aziridine in Orion-KL, Sgr B2(N) and W51.
Whilst surface chemistry can account for the molecules discussed above, there are other molecules observed

in hot cores that cannot be explained by this mechanism, such as dimethyl ether and methyl formate. Such
molecules must therefore be formed in the warm gas; a plausible mechanism is alkyl cation transfer reactions,
whereby a protonated alcohol transfers an alkyl group to a neutral base i.e.

ROH+
2 + R′X −→ R′XR + H2O

Many of these reactions have been measured in the laboratory and found to be rapid (e.g. Mautner &
Karpas 1986), and methanol and ethanol are known to be abundant in hot cores. Thus, dimethyl ether
can be formed via self-methylation of methanol, and methyl formate may arise from reactions of CH3OH+

2

with H2CO or HCOOH (Charnley et al. 1995, 2001b). Transfer of methyl groups to other common hot
core species can produce many other large molecules, e.g. CH3NCO, (CH3)2CO, NH2COCH3, CH3OC2H5,
isocyanides and large amides (Ehrenfreund & Charnley 2000; Charnley & Rodgers, in preparation). Another
predicted product is diethyl ether, which was tentatively detected by Kuan et al. (1999).

Finally, it is possible that the type of reactions we have discussed may lead to glycine, the simplest amino
acid. The surface chemistry scheme we described can lead to aminomethanol, via hydrogenation of HNCO.
Alternatively, aminomethanol is thought to be formed when ices containing H2O, NH3, and H2CO are heated
(Woon 1999). In either case, one would expect significant abundances of aminomethanol to be evaporated
into hot cores, and subsequent protonation followed by reaction with HCOOH may form glycine (Charnley
1997a). Despite many searches over the years, glycine has yet to be detected in the ISM, but recent tentative
identification of several lines suggest that it may soon be conclusively identified (Charnley et al. 2001b).
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Comets
The brightness of comet Hale-Bopp means that it is the only comet in which many large organic molecules

have been positively detected. The largest molecule observed in Hale-Bopp is methyl formate (HCOOCH3)
(Bockelée-Morvan et al. 2000), and Kuan et al. (2001a) reported a tentative detection of its structural
isomer acetic acid (CH3COOH). As discussed above, these molecules are also seen in hot cores where they
are thought to be daughter species. Thus, it is possible that the HCOOCH3 (and CH3COOH) seen in
Hale-Bopp were actually created in the coma. In order to investigate this possibility, we used our comet
model to follow the organic chemistry which occurs in the coma following the sublimation of methanol rich
ices from the nucleus (Rodgers & Charnley 2001b). We find that chemical reactions cannot form sufficient
quantities of HCOOCH3 and other organic molecules detected in Hale-Bopp: HCOOH, HC3N and CH3CN.
Therefore, these species must be present in the nuclear ice. Hence it appears that cometary ices are more
processed than their interstellar counterparts, which is consistent with primordial interstellar ices being
evaporated, perhaps within the protosolar nebula, undergoing a hot core-like phase of chemical processing,
then refreezing onto pre-cometary grains. However, we cannot be absolutely certain that these large organics
are daughter molecules in hot cores, and they may also be present in interstellar ices. One way to determine
the origin of these molecules may be to use D/H and 13C/12C ratios (Rodgers & Millar 1996; Rodgers &
Charnley 2001e; Charnley et al. 2001c).

Photo-fragmentation of cometary CHON particles, first detected by the Giotto probe in the coma of comet
Halley, has been proposed to account for the extended sources seen for many molecules and radicals in the
coma, in particular CO, C2, H2CO, CN and NH2. Specifically, to account for the coma sources of CO and
H2CO, and also the regular peaks in the mass spectra of CHON particles seen by Giotto, it has been proposed
that a substantial fraction of the CHON material consists of the formaldehyde polymer, polyoxymethy-
lene (POM, [–CH2–O–]n) (e.g. Huebner 1987). Other potential candidates include hexamethylenetetramine
(HMT, C6H12N4; Bernstein et al. 1995), polyaminocynaomethylene (PACM, [–(NH2)C(CN)–]n; Rettig et
al. 1992), and PAHs (specifically phenanthrene, C14H10; Moreels et al. 1994). It is likely that a mixture of
many types of organic particles are actually present in comets, but we may be able to constrain the amounts
of the different types if we can model the predicted production rates for daughter molecules, and compare
them with the observations.

THE HNC/HCN RATIO
Interstellar Medium

The HNC/HCN ratio varies a great deal in the ISM, with an inverse temperature dependence: in cold dark
clouds the ratio is typically ∼> 1, whereas in hot cores it is low. This was previously thought to be caused
by three factors; i) low temperature ion-molecule reactions preferentially forming HNC via the H2NC

+ ion,
ii) proton transfer reactions cycling between the two isomers via the HCNH+ ion, and iii) high temperature
isomerization reactions transforming HNC into HCN. However, recent quantum chemical calculations have
showed that assumptions (i) and (iii) are incorrect (e.g. Talbi et al. 1996).

In hot cores, HCN and HNC are thought to be daughter species, since HCN is produced efficiently from
reactions of NH3 and C+; at high temperatures (> 250K) the reaction of CN with H2 ensures that the
net destruction rate of HCN is extremely small (Rodgers & Charnley 2001a). Proton transfer to HCN to
form HCNH+ followed by recombination or proton transfer to ammonia forms HNC, and models predict
HNC/HCN ratios of ∼ 0.007–0.05 for a 300K core, depending on the age and the initial NH3 abundance.
This is in reasonable agreement with the observed value in these regions, but we are still unable to explain
the excess of HNC in cold clouds.

Comets
HCN has been seen in many comets, but HNC was detected for the first time in comet Hyakutake, where it

was present with an abundance relative to HCN of 6% (Irvine et al. 1996). HNC was subsequently detected
in comets Hale-Bopp and Lee, and the HNC/HCN ratio in Hale-Bopp showed a strong increase as the comet
approached perihelion, from < 0.02 at 2.5 AU to ∼ 0.16 at 1 AU (Irvine et al. 1998). The Hyakutake
results were originally interpreted as proof that cometary ices contain unprocessed material from the ISM,
but the observations of Hale-Bopp proved conclusively that HNC must be a daughter species, and that its
production is related to the solar photon flux and/or coma temperature.

We have used our comet model to investigate possible chemical production routes to HNC in the coma
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(Rodgers & Charnley 1998, 2001c). We find that ion-molecule chemistry is unable to synthesise the observed
quantities of HNC, but that endothermic isomerisation reactions of HCN, driven by suprathermal H atoms
produced in the photodissociation of parent molecules, may be efficient in large, active comets such as
Hale-Bopp. However, in comets Hyakutake and Lee we demonstrated that HNC must be produced via the
photodestruction of some unknown parent. Possible molecular candidates are HNCO and CH2NH, but the
former is thought to be photodissociated into NH + CO and/or H + OCN, whereas the latter is not observed
in comets. Hence, we consider it most likely that HNC is coming from CHON particles in the coma, and
conclude that the most likely candidate is PACM (cf. Rettig et al. 1992). This source of HNC may also
account for the extended sources of HCN and CN in the coma.

CARBON CHAINS
Interstellar Medium

Carbon chain molecules appear to be almost equally abundant in both the diffuse ISM and dense clouds
(Allamandola et al. 1999), and it has been proposed that C-chain anions may be responsible for some of
the diffuse interstellar bands (Tulej et al. 1998). The overall abundance of long C-chains (∼> 10 C atoms)
in diffuse clouds is ∼ 10−10 with respect to hydrogen, and they are thought to account for a few parts per
million of the total cosmic carbon. In comparison, ∼ 10% of the total cosmic carbon is in PAHs (see above).
Carbon chains are thought to be formed via neutral-neutral C-insertion reactions involving CN and C2H
radicals (Fukuzawa et al. 1998).

The overall abundances of chain molecules are derived from infrared observations of C=C vibrational
transitions; in order to identify specific molecules one must look at rotational transitions at millimeter
wavelengths. The largest molecule identified to date is HC11N which was seen in the dark cloud TMC-1
(Bell et al. 1997). The abundances decrease with increasing chain length, and this detection is at the limit
of current telescope capabilities, making the detection of longer chains difficult in the near-term. However,
in recent years the spectra of a large number of chain molecules have been accurately characterised in the
laboratory (e.g. McCarthy et al. 2000), and so future observations may be able to distinguish the precise
molecular nature of the smaller chains (≤ 10 C atoms).

Comets
Although there is no direct evidence for carbon chains in comets, the presence of the C2 and C3 radicals

suggests that they are fairly abundant. The longest chain molecule positively detected in a comet is HC3N,
which is a parent species in Hale-Bopp (Rodgers & Charnley 2001b). This suggests that longer cyanopolyynes
may also be present in the nucleus, albeit in lower abundances. It is interesting that C2 and C3 are observed
to be depleted in some Kuiper belt comets (A’Hearn et al. 1995), implying that C-chain molecules are more
abundant in Oort cloud comets. This can be explained if these chains were formed more efficiently in the
warmer, giant planet region of the protosolar nebula than the Kuiper Belt region. Alternatively, chain
molecules may form readily in both regions, but undergo further processing in the outer region, perhaps
involving saturation or the formation of ring molecules and fullerenes. We previously discussed the probable
contribution of polymeric material to the CHON particles in comets (e.g. Huebner 1987; Rettig et al. 1992).
However, this material cannot be unequivocally identified via spectroscopy of the coma, and we must wait
until the Stardust mission returns a sample of comet dust the the Earth for laboratory analysis before we
can properly understand the nature of the CHON grains.

DEUTERIUM FRACTIONATION
Interstellar Medium

The overall D/H ratio in our galaxy is ≈ 1.6× 10−5, but the D/H ratios in some molecules can be up to
104 times larger, since at low temperatures small zero-point energy differences result in the fractionation of
ions such as H2D

+, C2HD
+, and CH2D

+. Ion-molecule chemistry spreads the D-enrichment to a variety of
molecules, and the observed D/H ratios can be used to constrain the gas temperature, the electron fraction,
and the depletion of heavy elements (e.g. Millar et al. 2000). In addition, spatial variations in D/H ratios
may allow the propagation of Alfvén waves to be traced in molecular clouds (Charnley 1998). The D/H
ratios observed in interstellar molecules can also be used to probe the chemical mechanisms which form those
molecules. Rodgers & Millar (1996) showed that D/H ratios in hot cores trace the values in the precursor
ice, and Charnley et al. (1997) used this fact to show that the hot core abundances of the two isotopomers
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of deuterated methanol – CH2DOH and CH3OD – should always have a ratio of 3:1 if methanol is formed
on grains via hydrogenation of CO. Rodgers & Charnley (2001e) considered NH3 production in dense cores,
and showed that although the total fractionation of ammonia may vary from source to source, for a specific
chemical production mechanism the ratio of the multiply deuterated isotopomers should be constant, and
may be used to distinguish between gas phase and surface production of ammonia.

Comets
To date, the only deuterated molecules observed in comets are HDO and DCN. HDO was detected in

Halley, Hyakutake, and Hale-Bopp, and the observed HDO/H2O ratios lie in the range 5.7–6.6×10−4 (e.g.
Meier et al. 1998a). DCN was seen only in Hale-Bopp, where a DCN/HCN ratio of 0.002 was determined
(Meier et al. 1998b), although Blake et al. (1998) showed that the DCN/HCN ratio was a factor of ten larger
in the dust jets. We have used our comet model to follow the deuterium chemistry which occurs in the coma
and find that, as in hot cores, post-evaporation chemistry does not significantly alter the initial D/H ratios
(Rodgers & Charnley 2001d). Therefore, for parent species we can use the observed coma ratios to infer the
nuclear D/H ratio, and for daughter species we can use these ratios to constrain the nature of the parent
and the chemical mechanism by which the species are formed. In particular, if the DNC/HNC ratio can be
determined in a comet, we may be able to ascertain the origin of cometary HNC, which is currently not well
understood (see above).

Comparison of cometary D/H ratios with interstellar values may be used to determine the physical condi-
tions in the protosolar nebula, since it is likely that the original interstellar values were altered by chemical
processing and/or mixing in the nebula (Aikawa & Herbst 1999; Mousis et al. 2000). The observed D/H
ratios in comets are similar to the values in hot cores, but since HCN could possibly be a daughter species
in hot cores, this leaves only one molecule, HDO, for which comparisons are currently possible. Future
observations of other deuterated cometary molecules are therefore vital. An exciting recent development is
the first tentative detection of HDCO in a comet, Hale-Bopp (Kuan et al. 2001a). A determination of the
HDCO/H2CO ratio, when combined with the known D/H ratios in water and hydrogen cyanide, will further
constrain models of cometary origin. It is also useful to compare cometary D-enrichment with that seen in
the Earth’s oceans – it appears that comets have twice as much deuterium as the Earth, which casts doubt
on the assertion that comets brought the bulk of the volatiles to the Earth. On the other hand, Delsemme
(2000) has argued that the Earth’s water was deposited mainly by deuterium-poor comets formed in the
inner region of the protosolar nebula; such comets should account for ∼ 4% of the Oort cloud’s population.

CARBON AND NITROGEN FRACTIONATION
Interstellar Medium

Heavy isotopes of carbon and nitrogen, 13C and 15N, are formed in low- to intermediate-mass stars, and
so their abundances relative to 12C and 14N increase toward the galactic center (e.g. Boogert et al. 2000).
Langer et al. (1984) modelled the fractionation in 13C occurring in interstellar molecules, and concluded
that it is preferentially locked up in CO, and hence depleted in species such as C+, H2CO, CS, CH, and
HCN. Terzieva & Herbst (2000) modelled the fractionation occurring in 15N, and concluded that in typical
dark clouds the resulting fractionation is negligible. However, there is growing evidence for the presence
of ‘depletion cores’ in some clouds, where most of the molecules have frozen out onto grains, but some N2

remains in the gas phase (e.g. Charnley 1997c; Caselli & Walmsley 1999; Bergin et al. 2001). In this case,
only simple N-bearing molecules are present in the gas, and significant fractionation can occur (Charnley &
Rodgers 2001).

Comets
No significant fractionation is seen in cometary dust (Jessberger 1999), except for some grains which

are strongly depleted in 13C, which are thought to be unprocessed presolar grains formed in the outflows
of massive stars. In cometary volatiles, the 12C/13C ratios have been determined from observations of
C2, CN, and HCN in a number of comets (Wyckoff et al. 2000), and are found to lie in the range 85–93,
consistent with the terrestrial value of 90. The cometary 14N/15N ratio has been measured in CN and
HCN (Crovisier & Bockelée-Morvan 1999), and is found to equal 323, slightly larger than the terrestrial
value of 272. However, the 15N/14N ratio is seen to vary amongst different solar system objects, and the
initial protosolar value is uncertain (e.g. Kallenbach et al. 1998). Large 15N enhancements are seen in some
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meteoritic and interplanetary dust particle material (Messenger & Walker 1997), and the measurement of
a large 15NH3/

14NH3 ratio in a comet would provide positive evidence for the interstellar fractionation
scenario proposed by Charnley & Rodgers (2001).

SULPHURETTED MOLECULES
Interstellar Medium

The sulphur chemistry in cold clouds is not fully understood. Gas phase sulphur appears to be depleted in
dark clouds by a factor of 100-1000 relative to its cosmic abundance, whereas it is undepleted in the diffuse
ISM (e.g. Ruffle et al. 1999). It is clear that somehow sulphur must become preferentially incorporated into
refractory material as compared with C, N and O. The only solid phase sulphuretted molecule detected
to date is carbonyl sulphide (OCS) which has an abundance relative to H2O of 0.04–0.1% (Palumbo et al.
1997). In hot cores, a wide variety of S-bearing molecules are observed. Charnley (1997b) modelled the
sulphur chemistry occurring after the evaporation of H2S, and showed that all the observed sulphuretted
species except OCS can be formed in the hot gas from this one parent molecule. The predicted abundances
of different S-bearing daughter molecules depend on the core age and temperature, which means that
observations of species such as SO and SO2 may be used as ‘chemical clocks’ to determine the ages of the
cores (e.g. Hatchell et al. 1998).

Comets
To date, eight S-bearing molecules have been detected in comets, four of them solely in Hale-Bopp

(Crovisier & Bockelée-Morvan 1999). Many of these are also observed in hot cores, so it is possible that
sulphuretted cometary molecules are formed in the coma from reactions of H2S. We have previously discussed
the fact that the organic molecules seen in Hale-Bopp cannot have been formed via coma chemistry, which
appears to suggest that the S-bearing molecules in Hale-Bopp must also have been present in the nucleus.
However, hot core organic chemistry is driven by ion-molecule reactions, whereas the sulphur chemistry is
initiated by the reaction of H2S and H to form SH, which has a barrier of ∼ 860K. The large abundances
of suprathermal H atoms in the inner coma may therefore be instrumental in rapidly converting H2S into
other molecules (cf. Rodgers & Charnley 1998).

CONCLUSIONS
In this article we have presented a review of our current understanding of the organic chemistry that

can occur in dense molecular clouds and in comets. By comparing the respective molecular inventories of
interstellar and cometary environments we can begin to elucidate the degree of alteration of the interstellar
material as it becomes incorporated into protostellar nebulae. In the next decade, astronomical observations
of distant star-forming regions, combined with analyses of meteoritic and cometary samples, should allow
the relative degree of pristinity of cometary material to be determined. Space-based telescopes of relevance
to interstellar and cometary chemistry include SIRTF, FIRST-Herschel, NGST, and SOFIA. Although
cometary H2O can be detected from the ground through radiatively pumped ‘hot-band’ lines (Dello Russo
et al. 2000), space-based observatories are essential to overcome the telluric extinction affecting most water
lines. SWAS has observed H2O in comets Lee and McNaught-Hartley (Neufeld et al. 2000), and FIRST-

Herschel should allow the determination of HDO/H2O in a large sample of comets, including both short
and long period comets. The Stardust mission, although still some years from its encounter with comet
P/Wild 2, has already detected interstellar dust particles. Preliminary results indicate that these particles
are very similar to the complex organics seen in comet P/Halley, providing further evidence for a link between
interstellar and cometary materials; such particles are understood to be destroyed in cometary comae to
provide the observed ‘extended sources’ of molecules (e.g. Huebner 1987; Meier et al. 1993). Finally, the
Rosetta mission will be launched in 2003 and is due to rendezvous with comet P/Wirtanen in 2011. The
Rosetta lander module will allow the first in situ examination of the nature of a cometary nucleus, including
the determination of the elemental, molecular and isotopic composition of the surface and subsurface layers.
Assimilation and interpretation of the data returned by each of these missions will represent a significant
advance in the quest for a detailed understanding of the connection between interstellar and cometary
organic material.
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