UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

PROGRAMAS DE ESTUDIO SEXTO SEMESTRE

GENÉTICA Y FU	iclo UNDAMENTAL DE LA ROFESIÓN	_	Departamento BIOQUÍMICA
---------------	--------------------------------------	---	----------------------------

HORAS/SEMANA

OBLIGATORIA	Clave 1630	TEORÍA 4 h	PRÁCTICA O h	CRÉDITOS 8

Tipo de asignatura:	TEÓRICA
Modalidad de la asignatura:	CURSO

ASIGNATURA PRECEDENTE: Seriación indicativa con Biología Celular y con Bioquímica ASIGNATURA SUBSECUENTE: Ninguna.

OBJETIVO(S):

Proporcionar los principios básicos en los que se sustenta la Genética y las predicciones de la herencia a través de la probabilidad.

La comprensión de en qué consiste, cómo se transmite y cómo se expresa la información genética. ATRIBUTOS DEL PERFIL DE EGRESO A CUYO LOGRO CONTRIBUYE LA ASIGNATURA:

- ($\sqrt{\ }$) Diseño, evaluación y producción de medicamentos
-) Distribución, dispensación y uso racional de medicamentos
- ($\sqrt{}$) Producción de reactivos para diagnóstico
- $(\sqrt{})$ Diagnóstico de laboratorio
- ($\sqrt{}$) Investigación biomédica
- ($\sqrt{\ }$) Conservación del medio ambiente y aprovechamiento de los recursos naturales

UNIDADES TEMÁTICAS

NÚMERO DE	UNIDAD
HORAS POR	
UNIDAD	
6Т	1. INTRODUCCIÓN Y BASES CELULARES DE LA HERENCIA
6h	1.1 Panorama general de la genética y sus aplicaciones.
	1.2 Cromosomas como unidades de herencia.
	1.3 Ciclo celular, mitosis y meiosis
9Т	2. GENÉTICA MENDELIANA
9h	2.1. Leyes de Mendel
	2.2. Aplicaciones de la Genética Mendeliana
	2.3. Desviaciones de la Genética Mendeliana
6T	3. HERENCIA, DNA Y CROMATINA
6h	3.1 Descubrimiento de los ácidos nucleicos como material genético.
	3.2 Composición y estructura de los ácidos nucleicos.
	3.3 Organización y estructura de los genomas.
4T	4. GENÉTICA BACTERIANA
4h	4.1 Tipos de mutaciones en bacterias.
	4.2 Bacteriófagos y virus eucariontes.
	4.3 Plásmidos.
	4.4 Mecanismos de transferencia horizontal del material genético.
	4.5 Elementos genéticos móviles.

Elaborado y revisado por:	Aprobado por el H. Consejo	1/3
Profesores del Departamento de Bioquímica	Técnico el 4 de agosto de 2016	1/3

8T	5. METABOLISMO DEL DNA
8h	5.1 Replicación del DNA.
	5.2 Topología del DNA.
	5.3 Reparación del DNA.
	5.4 Recombinación del DNA
8T	6. TRANSCRIPCIÓN Y PROCESAMIENTO DEL RNA
8h	6.1 Tipos de genes.
	6.2 Promotores procariontes.
	6.3 Síntesis de RNA en procariontes .
	6.4 Las fases de la transcripción en procariontes.
	6.5 Transcripción en eucariontes
	6.6 Inhibición de la transcripción
	6.7 Procesamiento post-transcripcional de RNAm de eucariontes.
	6.8. Procesamiento post-transcripcional de RNAr y RNAt de eucariontes.
8T	7. CODIGO GENÉTICO Y TRADUCCIÓN.
8h	7.1 Código genético, universalidad, características y el RNAt
	7.2. Componentes del aparato de traducción.
	7.3 El proceso de traducción.
7T	8. REGULACIÓN DE LA EXPRESIÓN GENÉTICA.
7h	8.1 Regulación genética en procariontes.
	8.2 Regulación genética en eucariontes
	8.3 Regulación del ciclo celular y cáncer
	8.4 Regulación de la expresión genética por microRNAs
7 T	9. PRINCIPIOS DE INGENIERÍA GENÉTICA
7h	9.1 Aislamiento, análisis y manipulación de ácidos nucleicos.
	9.2 Generación de moléculas de DNA recombinante.
	9.3. Ingeniería Genética.
	9.4. Clonación y células troncales.
	9.5. Silenciamiento génico por microRNAs y aplicaciones.

SUMA: 64T=64h

BIBLIOGRAFÍA BÁSICA

- 1. Griffiths Anthony, J. F., William M. Gelbart, Jeffrey H. Miller and Richard C. Lewontin, *Modern Genetic Analysis*, 3a. ed. USA, Ed. Freeman, 2000.
- 2. Lewin, Benjamin, Genes, VII. Ed. 5a. Ed. USA, Oxford, 2000.
- 3. Snustad D. Peter and Michael J. Simmons, *Principles of Genetics*, 2a. Ed. USA. Ed. John Wiley & Sons, Inc., 2000.
- 4. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M. and Losick, R. (2008) Molecular Biology of the Gene (6th ed.). Benjamin-Cummings/ Pearson Education Inc., San Francisco, USA.
- 5. Clark, D. P. (2010) Molecular Biology. Academic Cell Update. Elsevier, London.
- 6. Brown, T. A. (2007) Genomes-3. Garland Science Publishing, New York & London, USA. Ha sido traducido al español: Brown, T. A. (2008) Genomas (3ª ed.). Editorial Médica Panamericana.
- 7. Elliott, D & Ladomery, M. (2011) Molecular Biology of RNA. Oxford University Press, UK.
- 8. Watson, J. D., Caudy, A. A., Myers, R. M. and Witkowski, J. A. (2007) Recombinant DNA. Genes and Genomes A short course. (3th ed.). W. H. Freeman and Co., New York.
- 9. Lewin, B. (2008) Genes IX. Jones and Bartlett Publish., London. Traducida al español: Editorial Mc Graw Hill.
- 10. Strachan Tom y P. Read Andrew. Genética Humana. 3ra edición. U.K. Editorial Mc Graw Hill, 2006
- 11. Genetics: Analysis and Principles Hardcover January 14, 2011 by Robert Brooker (Author)
- 12. Bios. Notas Instantáneas de Biología Molecular Cuarta edición, 2013. Alexander McLennan, Andy Bates, Phil Turner, Mike White. McGraw Hill Education ISBN: 978-607-15-1186-
- 13. Principles of Genetics, 6th Edition Binder Ready Version D. Peter Snustad, Michael J. Simmons August 2011, ©2012 ISBN: 978-1-118-12921-0
- 14. Hardcover Principles of Genetics, 6th Edition ISBN: 978-0-470-90359-9 784 pages August 2011,

Elaborado y revisado por:	Aprobado por el H. Consejo	2/3
Profesores del Departamento de Bioquímica	Técnico el 4 de agosto de 2016	2/3

©2012

- 15. Introduction to Genetic Analysis Author: Scott, David/ Sia, Elaine A./ Brockett, Mirjana/ Fixsen, William D./ Lavitt, Diane K. Publisher: Macmillan Higher Education Publication Date: 2011/03/25
- 16. Series: Lewins Genes Publisher: Jones & Bartlett Learning; 11 edition (December 31, 2012) Language: English ISBN-10: 1449659853 ISBN-13: 978-1449659851

BIBLIOGRAFÍA COMPLEMENTARIA

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. 2007. Molecular Biology of the Cell. Garland Science.
- 2. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P. 2007. Molecular Cell Biology. W.H. Freeman.
- 3. Malacinsk George, Essentials of Molecular Biology, Jones and Bartlett Pub. 2003.
- 4. Clarck David P., Molecular Biology, Academic Press, 2004.

Recursos electrónicos

- 1. www.hhmi.org/biointeractive/
- 2. molecularmovies.com/showcase/#Translation
- 3. genomesonline.org

SUGERENCIAS DIDÁCTICAS

Exposición de los temas con apoyo de material audiovisual que permita una más fácil comprensión y visualización de los diferentes conceptos. Durante la exposición se promoverá la discusión y se harán recapitulaciones frecuentes para promover la maduración de los conceptos. Con este mismo propósito, se elegirán preguntas relevantes en cada clase para su resolución en casa.

FORMA DE EVALUAR

Se realizan entre 3 y 4 exámenes parciales, además del examen departamental siguiendo los lineamientos establecidos por la Sria. Académica de Docencia

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA

El Profesor ideal deberá ser un académico con Maestría y/o Doctorado, que desarrolle actividades de investigación en las áreas de Genética y/o Biología Molecular. Es altamente recomendable que los profesores contaran con vocación hacia la docencia y de fácil interacción con los alumnos.