

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

DEPARTAMENTO DE FARMACIA

TEMARIO DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO

FARMACOLOGÍA I

(Clave 1408)

De acuerdo con el programa actualizado en septiembre del 2018.

Ciudad Universitaria, Ciudad de México, noviembre de 2024

Estimados estudiantes:

La información que se presenta a continuación no debe considerarse como una guía directa para el examen, sino como un recurso que les permitirá organizar su tiempo de estudio y definir los temas que deben preparar con mayor atención.

Este esquema detalla el programa de la asignatura de Farmacología 1, incluyendo los temas y subtemas abordados durante el curso presencial. Además, se incluyen referencias principales, secundarias y materiales de apoyo que los profesores han utilizado en la preparación de sus clases. Estos recursos son fundamentales para estructurar su proceso de estudio y maximizar su rendimiento en el examen.

Es importante señalar que, a partir del semestre 2025-1, los exámenes extraordinarios de la asignatura se llevarán a cabo de manera colegiada. Por lo tanto, les exhortamos a tomar en cuenta esta información para planificar su preparación de manera eficaz.

UNIDAD 1 INTRODUCCIÓN AL ESTUDIO DE LA FARMACOLOGÍA

Objetivo:

Explicar las bases para el conocimiento de las sustancias químicas de aplicación en la prevención y mantenimiento de la salud de acuerdo con breves antecedentes históricos, su origen, propiedades y características fisicoquímicas requeridas para su acción sobre los blancos de interacción a nivel molecular. Reconocer las áreas implicadas en la farmacología donde impacta la formación profesional del Químico-farmacéutico-biólogo para la investigación de nuevos fármacos. Describir las estrategias para la obtención de nuevos fármacos. Explicar los principales blancos moleculares de los fármacos y los tipos de acción farmacológica.

Temas y subtemas	Referencias	
1.1. Terminología	Ritter, 2020	Cap. 1
1.1.1. Definiciones de farmacología, fármaco, droga,	SS, 1984	Cap. IV
medicamento, suplemento alimenticio y forma farmacéutica.	Page, 2006	Cap. 1
1.1.2. Áreas de estudio de la farmacología.	ASPET, 2023	Artículo completo
	Flores, 2014	Cap. 1
	Mendoza, 2008	Cap. 1.1
	Lorenzo, 2018	Cap. 0
1.2. Sistemas de clasificación	Avendaño, 2001	Cap. 1
1.2.1. Nomenclatura de fármacos.	Page, 2006	Cap. 2
1.2.2. Sistema de clasificación por acción farmacoterapéutica.		
1.2.3. Sistema de clasificación por acción farmacológica.		
1.2.4. Sistema de clasificación por acción molecular		
1.2.5. Sistema de clasificación por estructura o naturaleza		
química.		

1.2.6. Sistema de clasificación por nombre genérico.		
1.2.7. Sistema de clasificación por su fuente vegetal o animal.		
1.2.8. Sistema de clasificación ATC.		
1.3. Historia de la farmacología (seminario).	Page, 2006	Cap. 1
1.3.1. Edad antigua,	ASPET, 2023	Artículo completo
1.3.2. Edad media.	Castañeda, 1999	Artículo completo
1.3.3. Edad moderna.	Huxtable, 1999	Artículo completo
1.3.4. Edad contemporánea.	Villareal, 1987	Artículo completo
1.3.5. Desarrollo de la farmacología en México.	Mendoza, 2008	Cap. 1.1, 6.5
	Rubin, 2007	Artículo completo
1.4. Fuentes para la obtención de sustancias bioactivas.	Proksch, 2002	Artículo completo
1.4.1. Fuentes naturales: plantas, animales, microorganismos.	Lozoya, 1997	Artículo completo
1.4.2. Modificación molecular.	Ban, 2006	Artículo completo
1.4.3. Semisíntesis.	Alamgir, 2017	Cap. 4
1.5 Estrategias para la obtención de sustancias bioactivas.	Ritter, 2020	Cap. 60
1.5.1. Uso tradicional	Ravaschino, 2007	Artículo completo
1.5.2. Casualidad.	Brunton, 2023	Cap. 1
1.5.3. Cernimiento biológico.		
1.5.4. Biotecnología.		
1.5.5. Diseño racional o síntesis planificada.		

UNIDAD 2 FARMACOLOGÍA EXPERIMENTAL

Objetivo:

Integrar los conocimientos básicos del análisis bioestadístico al manejo de datos farmacológicos. Describir las etapas de desarrollo de un fármaco nuevo a través de estudios preclínicos y clínicos. Identificar los posibles efectos adversos esperados en el desarrollo de nuevos fármacos y su clasificación. Describir los aspectos de regulación de fármacos. Inferir los conocimientos sobre la variabilidad biológica en la respuesta a los fármacos y los factores que influyen en su presentación.

Temas y subtemas	Referencias	
2.1. Consideraciones estadísticas (seminario).	Petrie, 2020	Cap. 1, 17-25
2.1.1. Definiciones y escalas de medición.		
2.1.2. Pruebas de hipótesis.		
2.1.3. Diseños experimentales más usados en farmacología.		
2.1.4. Pruebas estadísticas por comparación de grupos.		
2.2. Desarrollo de un fármaco nuevo. Fase no clínica (preclínica).	Ritter, 2020	Cap. 58
2.2.1. Introducción al desarrollo de un fármaco nuevo.	Page, 2006	Cap. 31
2.2.2. Estudios in vivo, in situ, in vitro, in silico e in chemico.	Wepierre, 1988	Cap. 10
2.2.3. Estudios de farmacodinamia.	Mendoza, 2008	Cap. 1.15
2.2.4. Estudios de farmacocinética.	Waldman, 2010	Cap. 1-2
2.2.5. Estudios de toxicidad.		
2.2.6. Estudios de potencial teratogénico.		
2.2.7. Estudios de potencial carcinogénico.		
2.2.8. Estudios de potencial genotóxico.		

2.3. Desarrollo de un fármaco nuevo. Fase clínica.	Ritter, 2020	Cap. 8
2.3.1. Estudios de Fase I.	Page, 2006	Cap. 31
2.3.2. Estudios de Fase II.	Craig, 2004	Cap. 1
2.3.3. Estudios de Fase III.	Flores, 2014	Cap. 11
2.3.4. Estudios de Fase IV.	Petrie, 2020	Cap. 14-16
	Lieff, 2007	Artículo completo
	Brunton, 2023	Cap. 1
	Waldman, 2010	Cap. 3
2.4. Reacciones adversas a fármacos.	Ritter, 2020	Cap. 58
2.4.1. Tipos de efectos.	Page, 2006	Cap. 6
2.4.2. Clasificación de las reacciones adversas.	Flores, 2014	Cap. 7
2.4.3. Métodos utilizados para detectar reacciones adversas.	Mendoza, 2008	Cap. 1.19
	Lorenzo, 2018	Cap. 70
2.5. Introducción a la regulación de fármacos (seminario).	WHO, 2003	Artículo completo
	Ravaschino, 2007	Artículo completo
2.6. Variabilidad biológica.	Ritter, 2020	Cap. 9
2.6.1. Tipos de variabilidad.	Page, 2006	Cap. 5
2.6.2. Factores fisiológicos que modifican el efecto de los	Craig, 2004	Cap. 6
fármacos.	Flores, 2014	Cap. 8, 9
2.6.3. Factores patológicos que modifican el efecto de los	Wepierre, 1988	Cap. 9
fármacos.	Mendoza, 2008	Cap. 1.13
2.6.4. Factores farmacocinéticos que modifican el efecto de los fármacos.	Waldman, 2010	Cap. 16-19
2.6.5. Factores farmacéuticos que modifican el efecto de los		
fármacos.		

2.7. Relación cuantitativa estructura-actividad (seminario).	Wepierre, 1988	Cap.11.
2.7.1. Definición y objetivos de QSAR.	Mannschreck, 2007	Artículo completo
2.7.2. Conceptos de farmacóforo, haptóforo y descriptores.	Leffingwell, 2003	Artículo completo
2.7.3. Efecto de la estereoquímica en la acción farmacológica.	Danishhuddin, 2016	Artículo completo

UNIDAD 3 FARMACODINAMIA

Objetivo:

Explicar los diferentes tipos de familias de receptores en la acción farmacológica y terapéutica de los fármacos. Analizar información para la comprensión de las principales vías de señalización en la acción farmacológica.

Temas y subtemas	Referencias	
3.1. Blancos moleculares.	Ritter, 2020	Cap. 2, 3
3.1.1. Niveles de acción de los fármacos.	Page, 2006	Cap. 3
3.1.2. Canales iónicos.	Flores, 2014	Cap. 3
3.1.3. Enzimas.	Brunton, 2023	Cap. 3, 4
3.1.4. Moléculas transportadoras.	Mendoza, 2008	Cap. 1.8
3.1.5. Receptores.	Golan, 2017	Cap. 5
3.1.6. Ácidos nucleicos.	Lorenzo, 2018	Cap. 4
3.2. Tipos de acción farmacológica.	Ritter, 2020	Cap. 3
3.2.1. A través de receptores.	Page, 2006	Cap. 3
3.2.2. Alteración del efecto de un agonista.	Lorenzo, 2018	Cap. 4
3.2.3. Alteración de los procesos de transporte.		
3.2.4. Alteración de la actividad enzimática.		
3.2.5. Alteración de la permeabilidad de los canales iónicos.		
3.2.6. Acciones farmacológicas que no requieren blanco		
molecular.		
3.3. Receptores	Ritter, 2020	Cap. 2

3.3.1. Teoría de receptores	Flores, 2014	Cap. 2
3.3.2. Conceptos: receptor, ligando, neurotransmisor y hormona.	Neubig, 2003	Artículo completo
3.3.3. Modelos operacionales y funcionales.	Waldman, 2010	Cap. 5
3.3.4. Tipos de ligandos.	Currie, 2018	Artículo completo
3.3.5. Características de los ligandos: afinidad, eficacia, eficacia		
intrínseca y potencia.		
3.4. Interacción de fármacos.	Ritter, 2020	Cap. 2
3.4.1. Tipos de interacciones.	Craig, 2004	Cap. 2
3.4.2. Tipos de agonistas y antagonistas.	Flores, 2014	Cap. 2, 10
3.4.3. Tipos de antagonismo.	Brunton, 2023	Cap. 3
	Wepierre, 1988	Cap. 7, 8
	Jones, 2001	Artículo completo
	Mendoza, 2008	Cap. 1.18
	Bailey. 2004	Artículo completo
	Golan, 2017	Cap. 1-2
	Currie, 2018	Artículo completo
3.5. Receptores ionotrópicos.	Ritter, 2020	Cap. 3
3.5.1. Tipos de receptores ionotrópicos.	Page, 2006	Cap. 3
3.5.2. Despolarización e hiperpolarización.	Flores, 2014	Cap. 3
	Brunton, 2023	Cap. 3
	Mendoza, 2008	Cap. 1.7
3.6. Receptores metabotrópicos	Ritter, 2020	Cap. 3
3.6.1. Clases de receptores metabotrópicos.	Page, 2006	Cap. 3
3.6.2. Familia G₅.	Flores, 2014	Cap. 3
3.6.3. Familia G _{i/o} .	Brunton, 2023	Cap. 3
3.6.4. Familia G _{q/11} .	Mendoza, 2008	Cap. 1.7

3.6.5. Familia G _{12/13} .	Waldman, 2010	Cap. 6
3.7. Receptores asociados a sistemas enzimáticos.	Ritter, 2020	Cap. 3
3.7.1. Tipos de receptores acoplados a sistemas enzimáticos.	Page, 2006	Cap. 3
3.7.2. Alteraciones de la activación.	Flores, 2014	Cap. 3
	Brunton, 2023	Cap. 3
	Waldman, 2010	Cap. 6
	Golan, 2017	Cap. 2
3.8. Receptores intracelulares.	Ritter, 2020	Cap. 3
3.8.1. Clases de receptores intracelulares (I, II, III y IV).	Page, 2006	Cap. 3
	Brunton, 2023	Cap. 3
3.9. Mecanismos de regulación de receptores.	Ritter, 2020	Cap. 2
3.9.1. Desensibilización.	Flores, 2014	Cap. 2
3.9.2. Hipersensibilidad		

UNIDAD 4 FARMACOMETRIA

Objetivo:

Explicar la cuantificación de los efectos de los fármacos mediante la determinación de la ventana de actividad biológica. Identificar los términos asociados a la relación cuantitativa en la administración de fármacos. Comparar los diferentes tipos de representación dosis o concentración-respuesta y el cálculo e interpretación de parámetros farmacológicos, así como los tipos de interacción de fármacos.

Temas y subtemas	Referencias	
4.1. Relaciones dosis-respuesta.	Schwinghammer, 1988	Artículo completo
4.1.1. Definición de farmacometría.	Balderas, 2017	Cap. 3
4.1.2. Modelos farmacodinámicos.	Waldman, 2010	Cap. 14
4.1.3. Modelo del efecto fijo.		
4.1.4. Modelo lineal logarítmico.		
4.1.5. Modelo del efecto máximo.		
4.1.6. Modelo del efecto máximo sigmoide.		
4.1.7. Criterios para seleccionar un modelo.		
4.2. Curvas dosis-respuesta.	Page, 2006	Cap. 4
4.2.1. Características de las curvas dosis-respuesta.	Craig, 2004	Cap. 2
4.2.2. Curva dosis-respuesta cuantal.	Wepierre, 1988	Cap. 10
4.2.3. Construcción experimental de una curva dosis-respuesta	Foster, 1939	Artículo completo
cuantal.	Balderas, 2017	Cap. 2-3
4.2.4. Cálculo de la DL_{50} , DT_{50} y DE_{50} por modelos de efecto fijo.		
4.2.5. Fundamentos del análisis Probit.		

4.2.6. Índice terapéutico y margen de seguridad.		
4.2.7. Curva dosis-respuesta gradual.		
4.2.8. Construcción de una curva dosis-respuesta gradual:		
efecto independiente y efecto acumulativo.		
4.2.9. Cálculo de la DE ₅₀ por modelos numéricos.		
I.3. Cálculos de farmacometría.	Castillo, 2004	Cap. 4, 5
4.3.1. Método Probit para determinar DL_{50} y los límites de	Infante, 1994	Todo el libro.
confianza a partir de los datos de una curva dosis-respuesta	Wepierre, 1988	Cap. 10
cuantal.	Balderas, 2017	Cap. 4-6
4.3.2. Procedimiento para determinar la DE50 a partir de los datos	Litchfield, 1949	Artículo completo
de una curva dosis-respuesta gradual por medio del método	Miller, 1944	Artículo completo
de máxima verosimilitud.		
4.3.3. Determinación de la potencia de un antagonista: ecuación		
de Schild.		
4.3.4. Modificación de la ecuación de Schild para determinar la		
potencia de un antagonista no competitivo.		

UNIDAD 5 FARMACOCINÉTICA

Objetivo:

Explicar la cuantificación de los efectos de los fármacos mediante la determinación de la ventana de actividad biológica. Identificar los términos asociados a la relación cuantitativa en la administración de fármacos. Comparar los diferentes tipos de representación dosis o concentración-respuesta y el cálculo e interpretación de parámetros farmacológicos, así como los tipos de interacción de fármacos.

Temas y subtemas	Referencias	
5.1. Introducción a la farmacocinética.	Ritter, 2020	Cap. 11
5.1.1. Definiciones y conceptos básicos.	Shargel, 2016	Cap. 1
5.1.2. Proceso LADBE.	Craig, 2004	Cap. 5
5.1.3. Modelos farmacocinéticos más comunes.	Brunton, 202	Cap. 2
	Wepierre, 1988	Cap. 6
	Recigno, 1997	Artículo completo
	Waldman, 2010	Cap. 13
	Domenech, 2000	Cap. 2-3
	Golan, 2017	Cap. 3
	Currie, 2018b	Artículo completo
5.2. Absorción de fármacos.	Ritter, 2020	Cap. 9
5.2.1. Definiciones.	Shargel, 2016	Cap. 8, 14
5.2.2. Vías de administración	Craig, 2004	Cap. 3
5.2.3. Mecanismo de absorción.	Flores, 2014	Cap. 4
5.2.4. Factores que influyen en la liberación del fármaco	Brunton, 2023	Cap. 2

5.2.5. Factores que influyen en la absorción del fármaco	Wepierre, 1988	Cap. 1, 2
5.2.6. Interacciones de fármacos en el proceso de absorción.	Mendoza, 2018	Cap. 1.2-1.4
	Golan, 2017	Cap. 3
	Lorenzo, 2018	Cap. 1
	Currie, 2018b	Artículo completo
5.3. Distribución de fármacos.	Ritter, 2020	Cap. 9
5.3.1. Definiciones.	Shargel, 2016	Cap. 11
5.3.2. Procesos y mecanismos de distribución de fármacos.	Craig, 2004	Cap. 3
5.3.3. Factores involucrados en la modulación de la distribución	Flores, 2014	Cap. 4
de fármacos.	Brunton, 2023	Cap. 2
5.3.4. Volumen aparente de distribución (V _d).	Wepierre, 1988	Cap. 3
5.3.5. Cálculo de la constante de reparto (Kp)	Mendoza, 2008	Cap. 1.5
5.3.6. Interacción de fármacos en el proceso de distribución de	Lorenzo, 2018	Cap. 1
fármacos.		
5.4. Biotransformación de fármacos.	Avendaño, 2001	Cap. 7
5.4.1. Definiciones.	Ritter, 2020	Cap. 9
5.4.2. Reacciones de fase 1.	Shargel, 2016	Cap. 12, 13
5.4.3. Reacciones de fase 2.	Craig, 2004	Cap. 4
5.4.4. Tipos de metabolitos y su actividad farmacológica.	Flores, 2014	Cap. 5
5.4.5. Factores que modifican la biotransformación de fármacos.	Brunton, 2023	Cap. 5
5.4.6. Circulación enterohepática.	Wepierre, 1988	Cap. 4
5.4.7. Interacción de fármacos en el proceso de	Mendoza, 2008	Cap. 1.6
biotransformación.	Lin, 1997	Artículo completo
5.4.8. Inducción e inhibición enzimática.	Park, 2005	Artículo completo
	Stachulski, 2000	Artículo completo
	Waldman, 2010	Cap. 20
	Golan, 2017	Cap. 4

	Lorenzo, 2018	Cap. 2
5.5. Excreción de fármacos.	Ritter, 2020	Cap. 9
5.5.1. Definiciones.	Shargel, 2016	Cap. 7
5.5.2. Principales vías de excreción de fármacos.	Craig, 2004	Cap. 4
5.5.3. Factores que modifican la excreción de fármacos.	Flores, 2014	Cap. 4
5.5.4. Interacción de fármacos en el proceso de excreción.	Brunton, 2023	Cap. 2
	Wepierre, 1988	Cap. 5
	Mendoza, 2008	Cap. 1.9
	Lorenzo, 2018	Cap. 2
5.6. Introducción al cálculo de parámetros farmacocinéticos.	Shargel, 2016	Cap. 4, 5, 8
5.6.1. Modelo monocompartimental abierto.	Aguilar, 2014	Cap. 8-12
5.6.2. Cálculo de parámetros farmacocinéticos a partir de datos	Doménech, 2000	Cap. 5, 7-8, 11-13
sanguíneos. Administración intravascular y administración extravascular.	Currie, 2018b	Artículo completo
5.6.3. Cálculo de parámetros farmacocinéticos a partir de datos urinarios. Administración intravascular y administración extravascular.		

REFERENCIAS

- 1. Aguilar A, Caamaño M, Martín F y Montejo M. 2014. Biofarmacia y farmacocinética. Ejercicios y problemas resueltos. 2a. edición. Elsevier, España
- 2. Alamgir A. 2017. Therapeutic Use of Medicinal Plants and Their Extracts: Volume. Pharmacognosy. Springer, EUA.
- 3. American Society for Pharmacology and Experimental Therapeutics (ASPET). 2023. Explore Pharmacology. [Folleto en línea].

 Disponible en: https://www.aspet.org/docs/default-source/education-files/aspet_explore-pharmacology-2023_v3.pdf?sfvrsn=279772d3_2
- 4. Avendaño M. 2001. Introducción a la química farmacéutica 2a edición. Interamericana-McGraw Hill, España.
- 5. Bailey D y Dresser G. 2004. Natural products and adverse drug interactions. CMAJ, 170(10):1531-1532.
- 6. Balderas, J, Alfaro A y Navarrete A. 2017. Cálculos en Farmacología para el estudiante de Farmacia. Vol. 1. Farmacometría: Curvas dosis-respuesta de tipo gradual. UNAM, México.
- 7. Ban T. 2006. The role of serendipity in drug discovery. Dialogues in Clinical Neuroscience. 8(3):335-344.
- 8. Barraza M y Campos A. 2007. Elementos para mejorar la regulación farmacéutica en México: la experiencia del Reino Unido. FCO/Secretaría de Salud, México
- 9. Brunton Ly Knollmann. 2023. Goodman & Gilman's The Pharmacological Basis of Therapeutics 14th Edition. McGraw-Hill, EUA.
- 10. Castañeda-Hernández G. 1999. Mexican Pharmacology at the dawn of the new millenium: achievements and challenges. Proc. West. Pharmacol. Soc. **42**:167-170.
- 11. Castillo G. 2004. Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Estandarización, intercalibración, resultados y aplicaciones. Instituto Mexicano de Calidad de Agua, México.
- 12. Craig Ch y Stitel R. 2004. Modern Pharmacology with Clinical Applications, 6th Edition. Lippincott Williams & Wilkins, EUA.
- 13. Currie G. 2018. Pharmacology, Part 1: Introduction to Pharmacology and Pharmacodynamics. Journal of Nuclear Medicine Technology. 46(2):81-86
- 14. Currie G. 2018b. Pharmacology, Part 2: Introduction to Pharmacokinetics. Journal of Nuclear Medicine Technology. 46(2):221-230
- 15. Danishuddin y Khan A. 2016. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discovery Today. 21(8):1291-1302.
- 16. Doménech, J, Martínez J y Plá J. 2000. Biofarmacia y farmacocinética. Vol. 1. Farmacocinética, Edit. Síntesis, S. A., España
- 17. Flores J. 2014. Farmacología Humana. 6a ed. Elsevier Masson, España.

- 18. Foster R. 1939. Standardization of safety margin. Journal of Pharmacology, 65:1-17.
- 19. Golan D, Armstrong E y Armstrong A. 2017. Principles of pharmacology. %he pathophysiologic basis of drug therapy. 4th edition. Wolters Kluwer, EUA.
- 20. Huxtable R. 1999. A brief history of pharmacology, therapeutics and scientific thought. Proc. West. Pharmacol. Soc. **42**:181-223.
- 21. Infante S y Calderón L. 1994. Manual de análisis probit. Colegio de postgraduados, México
- 22. Jones O. 2001. Drug interactions. Student BMJ, 9:323
- 23. Kijoa A y Sawangwong P. 2004. Drugs and cosmetics from the sea. Marine Drugs, 2:73-8.
- 24. Leffingwell J. 2003. Chirality and bioactivity I:Pharmacology. Leffingwell Reports, 3 (1):1-27.
- 25. Lieff B. 2007. Experimental drugs on trial. Scientific American. Octubre:92-99.
- 26. Lin J y Lu A. 1997. Role of Pharmacokinetics and Metabolism in Drug Discovery and Development. Pharmacological Reviews, 49(4):403-449.
- 27. Litchfield, J. T., & Wilcoxon, F. (1949). A simplified method of evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics, 96, 99-113.
- 28. Lorenzo P, Moreno A, Leza J, Lizasoain I, Moro M y Portolés A. 2018. Velázquez. Farmacología Básica y clínica. 19a edición. Editorial Médica Panamericana, México.
- 29. Lozoya X. 1997. Fármacos de origen vegetal de ayer y de hoy. Investigación y Ciencia, 254:4-9.
- 30. Mannschreck A, Kiesswetter R y von Angerer E. 2007. Unequal Activities of Enantiomers via Biological Receptors: Examples of Chiral Drug, Pesticide, and Fragrance Molecules. Journal of Chemical Education, 84(12):2012-2018.
- 31. Mendoza N. 2008. Farmacología Médica. Editorial Médica Panamericana, México.
- 32. Miller, L. C., & Tainter, M. L. (1944). Estimation of the ED50 and Its Error by Means of Logarithmic-Probit Graph Paper. Proceedings of the Society for Experimental Biology and Medicine, 57(2), 261-264.
- 33. Neubig R, Spedding M, Kenakin T, y Christopoulos A. 2003. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacological reviews, 55(4):597-606.
- 34. Page C, Curtis M, Sutter M, Walker M y Hoffman B. 2006. Integrated Pharmacology. 3rd Edition. Mosby, Inglaterra.
- 35. Park K, Williams D, Naisbitt D, Kitteringham N, Pirmohamed M. 2005. Investigation of toxic metabolites during drug development. Toxicology and Applied Pharmacology, 207:S42 –S434
- 36. Petrie Ay Sabin C. 2020. Medical statistics at a Glance. 4th edition. Wiley-Blackwell, EUA

- 37. Proksch P, Edrada R y Ebel R. 2002. Drugs from the seas current status and microbiological implications. Appl Microbiol Biotechnol, 59:125–134.
- 38. Ravaschino E. 2007. Diseño racional de drogas: en busca de la droga ideal. Química Viva, 6(003):91-103.
- 39. Recigno A. 1997. Fundamental Concepts in Pharmacokinetics. Pharmacological Research, 35(5):363-390.
- 40. Ritter J, Flower R, Henderson G Loke Y, MacEwan D y Rang H. 2020. Pharmacology. 9th Edition. Elsevier, EUA.
- 41. Rubin P. 2007. A Brief History of Great Discoveries in Pharmacology: In Celebration of the Centennial Anniversary of the Founding of the American Society of Pharmacology and Experimental Therapeutics. Pharmacol Rev, 59:289-359.
- 42. Schwinghammer T y Kroboth P. 1988. Basic concepts in pharmacodynamic modeling. The Journal of Clinical. Pharmacogy,. 28:388-394.
- 43. Secretaría de Salud. 1984. Ley General de Salud de los Estados Unidos Mexicanos. Última Reforma DOF 7-06-2024.
- 44. Shargel L, Wu-Pong S y Yu, A. 2016. Applied biopharmaceutics and Pharmacokinetics. 7th Ed. McGraw-Hill Medical, EUA.
- 45. Stachulski A y Lennard M. 2000. Drug Metabolism: The Body's Defense against Chemical Attack. Journal of Chemical Education, 77(3):349-353.
- 46. Villarreal J. 1987. Farmacología mexicana: historia y futuro. Avance y perspectiva, **31**:3-17.
- 47. Waldman, S y Terzic A. 2010. Farmacología y terapéutica. Principios para la práctica. Manual Moderno, México.
- 48. Wepierre J. 1988. Manual de farmacología general y molecular. Masson Editores, España.
- 49. WHO. 2003. Por una reglamentación farmacéutica eficaz como garantía de seguridad, eficacia y calidad. Perspectivas políticas de la OMS sobre Medicamentos, (6):1-6. (Artículo en línea). Disponible en: https://iris.who.int/handle/10665/68503