

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE QUÍMICA ORGÁNICA

COMPENDIO DE PRÁCTICAS LABORATORIO DE QUÍMICA ORGÁNICA I CLAVE 1311

Elaborado y revisado por Profesores del Departamento de Química Orgánica:

Última revisión:

M. en C. María del Rayo Salinas Vázquez

Dr. Jacinto Eduardo Mendoza Pérez

Elaboración:

Profesores que han impartido la asignatura.

TALLER No. 1 GRUPOS FUNICONALES Y ESPECTROSCOPÍA DE INFRARROJO

OBJETIVOS CADÉMICOS

- Identificar los grupos funcionales más comunes en Química Orgánica.
- Conocer la utilidad de la espectroscopía de infrarrojo (IR) para la identificación de los grupos funcionales en Química Orgánica.

PROBLEMA

El alumno identificará los grupos funcionales de compuestos orgánicos y podrá reconocer grupos funcionales en los espectros de IR.

DESARROLLO DEL TALLER

Grupos funcionales:

Los grupos funcionales más utilizados en química orgánica se muestran en la siguiente tabla la cual está ordenada por prioridad decreciente (IUPAC).

Tabla 2. Grupos funcionales empleado en química orgánica.

Grupos	Fórmula general	Sufijo	Prefijo
funcionales		,	,
Cationes	R₄N⁺	amonio	Amonio
	R_4P^+	fosfonio	Fosfonio
	R₃S⁺	sulfonio	Sulfonio
Ácidos carboxílicos	O C O H	Ácido-oico	Carboxi
Anhídridos de ácidos carboxílicos	0 0 0 0	Anhídrido -oico	
Ésteres de ácido carboxílicos	0 - 0 - 0 - 0 - 0	-oato de alquilo	Alcoxicarbonil
Haluros de acilo	0 - -	Haluro de- oílo	Halogenoalcanoíl
Amidas	0=C N	-amida	Amido-(Carbamoíl-)
Nitrilos	C C N	-nitrilo	Ciano-
Aldehídos	O = C \ H	-al, -(aldehído)	Oxo- (Alcanoíl)

Cetonas	0	-ona	Охо-
Cotonia	0,0	ona	O.Ke
Alcoholes	, O-H	-ol	Hidróxi-
Mercaptanos	S-C	-tiol	Mercapto-
Aminas	N-C	-amina	Amino-
Alquenos	C=C	-eno*	Alquenil-
Alquinos	—C≣C—	-ino*	Alquinil-
Alcanos	(sólo contienen- enlaces sencillos) C-H y C-C	-ano*	Alquil-
Éteres		(éter)	Alcoxi-Éter
Sulfuros	_S	(sulfuro)	Alquitio- Sulfuro- Alquilsulfanil
Haluros	(X = F, Cl, Br, I)		Haluro de
Nitro	O: N O -		Nitro-

^{*}Sufijos sobre una raíz. Los alcanos alquenos y alquinos son los nombres principales, de los cuales se derivan otros nombres por adición de sufijos y prefijos.

ESPECTROSCOPÍA DE INFRARROJO (IR):

La espectroscopía es el estudio de la interacción de la radiación con la materia.

En la espectroscopía de infrarrojo normal la radiación utilizada comprende entre 400 y 4000 cm⁻¹. En el espectro IR aparecen los valores de % de transmitancia de radiación infrarroja (radiación no absorbida) entre los rangos mencionados arriba, observando una serie de picos característicos para cada grupo funcional presente en la molécula bajo estudio.

Tabla 3. Bandas características de IR de algunos grupos funcionales.

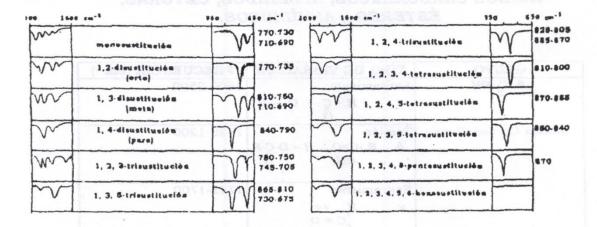
ALCANOS.		
GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
	Vibraciones C-H	A A A
Metilos (-CH ₃)	Estiramiento asimétrico.	2960
	Vas Hegh	
	Estiramiento simétrico.	2870
	Ve He H	
	Torsión asimétrica	1460
	δas ψ ^H i H	71 ADF 8.
	Torsión simétrica.	1380
	δ _s H K H C C	285-4.26
Metilenos (-CH ₂ -)	Estiramiento asimétrico.	2925
-900)1	Vas H NH	0008
	Estiramiento simétrico.	2850
	Va He aH	
	Torsion de Tijera	1470
	Torsión de Balanceo (-CH ₂ -) _n , thotale n ≥ 4 δ >c H	725-720
sopropilo (CH);-CH-	Estiramiento	1380 y 1360
sopropilo (engren-	V H-С-Н -СН -СН -СН	1170 y 1145 débiles
Terbutilo (CH ₃) ₃ -C-	Estiramiento V CH	1380 y 1360 1255 y 1210
	H H-C-H	7,5
	H-C-C	W

ALQUENOS.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm.1
	Vibraciones C-H	
R H C=C H Vinilo	Estiramiento asimétrico Vas AH =C	3100
	Estiramiento simétrico	2975
	Torsion de Tijera δ =C H)	1420
	Torsion C-H fuera del plano δ R H(·)	990
	$\begin{array}{c c} \delta & R \\ & > C = C \\ & H \end{array}$	910
	Sobretono de deformación C-H fuera del plano.	1800-1750
R H R H Metileno terminal	Estiramiento asimétrico	3100
	Estiramiento simétrico Vs =C H	2975
	Torsion de Tijera δ =C H	1420
	Torsion β (*) = C (H (-)	890
	Sobretono de deformación C-H fuera del plano.	1800-1750

H H C=C R cts	Estiramiento $V \qquad C = C - H$	3020
	Torsión C-H fuera del plano δ R R C=C (**) H (**)	730-650
H R C=C R H trans	Estiramiento $V \qquad C = C - H$	3020
	Torsión C-H fuera del plano δ H(+) C=C R	965
R R' C=C R' H Trisustituido	Torsion C-H fuera del plano $S = R(\cdot) = R'(\cdot)$ $C=C = H(\cdot)$	840-800
Vibraciones C=C		
Vinilo, metileno terminal, cis, trans. Trisustituído.	Estiramiento ∨ ⇒ c = c =	1640-1680
polienos	Estiramiento	1600-1640

ALQUINOS.


GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
	Vibraciones C-H	
- C = C-H	Estiramiento ∨ ↔ - C = C - H	3325-3250
	Torsion δ # C - H(*)	750-650
	Vibraciones $C \equiv C$	
-C≡C (posición terminal)	Estiramiento ∨ ↔ - C ≡ C -	2140-2100
-C=C- (posición central)	Estiramiento V ↔ - C = C -	2260-2190

AROMÁTICOS.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
Control of the contro	Vibraciones C-H	
	Estiramiento H	3150-3050
	Torsion fuera del plano δ	950-650 *
	Sobretonos	2000-1600 *
	Vibraciones C = C	
	Estiramiento	Hasta 4 bandas entre 1600-1450

Nota: Los sobretonos, así como las bandas debidas a las vibraciones de torsión fuera del plano de los distintos grupos aromáticos, se encuentran en la siguiente tabla.

ALCOHOLES.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
R- OH Alcohol	Estiramiento V O - H	3650-3200
	Torsión 8 - O - H >	1500-1300
	Torsión (·) (+) δ - O - H	650
ste entrant QGEI v series on unional series alte meneral betresseries at a	1 1	1200-1050 1050 alcohol primario 1100 alcohol secundario 1150 alcohol terciario 1200 fenol

ÉTERES.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm.1)
R > O R Éter (alifático y cíclico)	Estiramiento asimétrico	1150-1070
C = C O R Éter (aromático y vinilico)	Estiramiento asimétrico.	1275-1200
	Estiramiento simétrico. v. C = C R	1075-1020
CH₂ - O - R Metoxilo.	Estiramiento.	2820

GRUPO CARBONILO.

ÁCIDOS CARBOXÍLICOS, ALDEHÍDOS, CETONAS, ÉSTERES y ANHÍDRIDOS.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
R- C- OH Ö	Estiramiento ∨ R - C - O → H Ö	3500-2500
Ácidos Carboxílicos.	Torsión δ R -C=OH - O-C-R ÖH Ö	1420-1200
	Estiramiento ∨ R ↔ C = O OH	1725-1700
H C=O	Resonancia de Fermi C - H	2820 y 2720
Aldehido	Estiramiento V H C=O R	1740-1720
R C=O R	Estiramiento v R \leftrightarrow C = O R	1715-1680
Cetona	R C = O	1100 y 1300 (bandas de baja intensidad en cetonas alifáticas y de alta intensidad en cetonas aromáticas)

	7	T. T
R - C - O - R	Estiramiento	1750-1735
0	$V R \leftrightarrow$	
	C = 0	1
	R · Ó	
Ester	Estiramiento simétrico y	Dos bandas entre
	asimétrico	1300-1050
	V. R. C. → O → R	banda de mayor intensidad
	Ö	1180 formiato
	· —	1240 acetato 1190 alquil éster
	" p c+o+n	1165 metil ester
	$V_{as} R - C \stackrel{\longrightarrow}{=} O \stackrel{\longleftarrow}{=} R$	
R - C - O - C - R	Estiramiento asimétrico	1820
Ö Ö	Vas R.C.O.C.R	
Anhidrido	Estiramiento simétrico	1760
	Va R.C.O.C.R	
	Estiramiento simétrico	1300-1050 (1-2 bandas
	v. y asimétrico vas	intensas)
	€÷ €÷	
	R - C - O - C - R	

AMINAS.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm.1)
	Vibración N-H	
R-NH2 Ar-NH2	Estiramiento asimétrico Vas R - N H	3500
	Estiramiento simétrico V	3400
·NH ₂	Torsion en el plano δ -N H	1640-1560
	Torsion fuera del plano 8 - N H(+)	900-650
R-NH2	Estiramiento \leftarrow V $R-C-N-H$ HH H	1230-1030
R-NH-R	Estiramiento ∨ R → N - H R	3350-3310 (débiles)

Ar NH-R	Estiramiento V R N - H	3450
-NH-	Torsión δ R N - H(*)	1580-1490
Ar-NH-R	Estiramiento	1360-1250

AMIDAS.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
	Vibración N-H	
R - C - NH ₂	Estiramiento asimétrico Vas R - C - N H	3500
Ar - C - NH ₂	Estiramiento simétrico V	3400
	Torsión en el plano S $R - C - N$	1640-1560
	Torsion fuera del plano δ $H(*)$ $R - C - N($ O $H(*)$	900-650
R·NH·C·R	Estiramiento ↔ V R - C - N - H Ö R	3350-3310

Ar - C - NH - R	Estiramiento v O - C - N - H o R	3450
-NH-	Torsión (-) 8 8 - C - N R	1580-1490
	Vibración C=O	
C=O (amida)	Estiramiento \leftrightarrow $V R \cdot C = O$ NH_2	1670-1640

GRUPO NITRO.

GRUPO	TIPO DE VIBRACIÓN	FRECUENCIA (cm-1)
R - NO ₂	Estiramiento asimétrico Vas R - N	1550
	Estiramiento simétrico R - N	1370
Ar - NO ₂	Estiramiento asimétrico	1525
	Estiramiento simétrico Va Ar - N	1345
	Estiramiento V C N O	870

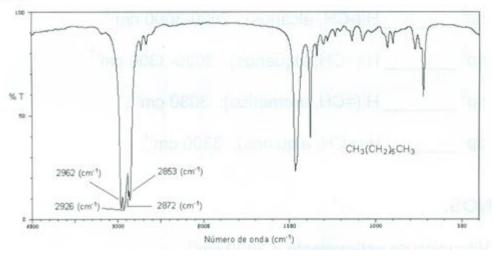


Figura 1. Espectro de IR del *n*-heptano

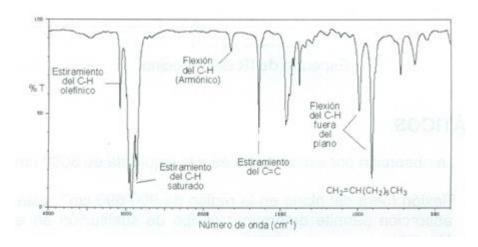


Figura 2. Espectro de IR del 1-octeno.

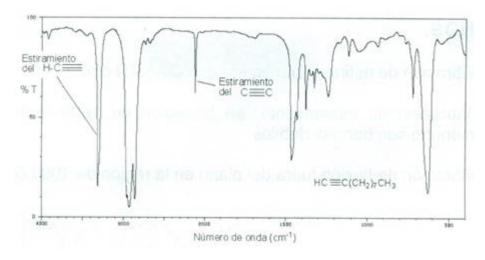


Figura 3. Espectro de IR del 1-decino.

REFERENCIAS BIBLIOGRÁFICAS

- ALBORES, M. et al. "Grupos funcionales, nomenclatura y reacciones principales". Departamento de Química Orgánica. Facultad de Química. UNAM. 2ª Edición. México 2017. http://www.librosoa.unam.mx/handle/123456789/271
- McMurry, J., (2018), Química Orgánica, México, Cengage Learning.
- Wade, L.G. Jr., (2017), Química Orgánica, Vol. 1 y 2, México, Pearson Educación.

Apéndice I: Conocimientos previos

- Estructura de los grupos funcionales más comunes en química orgánica.
- Principios de espectroscopía de infrarrojo y sus aplicaciones. Información obtenida de los espectros.

Apéndice II: Cuestionario

Lo propondrá el profesor.

PRÁCTICA No. 1 DETERMINACIÓN DE PUNTO DE FUSIÓN

OBJETIVOS ACADÉMICOS

- Realizar la calibración del termómetro del aparato de medición utilizado.
- Determinar los puntos de fusión de sustancias desconocidas.
- Conocer la utilidad del punto de fusión como criterio de identidad y pureza.

PROBLEMA

El alumno determinará la pureza e identificará la muestra problema que se le proporcionará a través de valores de punto de fusión.

REACTIVOS

Se utilizarán sustancias sólidas cuyos puntos de fusión estén comprendidos dentro de la escala del termómetro:

- Para curva de calibración: Benzofenona, ácido benzoico, 2,4-dinitrofenilhidracina y ácido succínico.
- Muestras problema: ácido adípico, ácido cinámico, ácido cítrico, benzoina, naftaleno y vainillina, entre otros.

Acetona-metanol (1:1) para lavar los cubreobjetos.

EQUIPO

- 1 Aparato Fisher-Johns o Stuart
- 2 Cubreobjetos de 8 mm de diámetro o 6 tubos capilares de 7 cm de I, debe traerlos el estudiante
- 1 Espátula de Cr-Ni de 20 cm
- 1 Vaso de precipitados de 150 mL
- 1 Vidrio de reloj
- 1 Nave de pesado

DESARROLLO EXPERIMENTAL

I. CALIBRACIÓN DEL APARATO PARA DETERMINAR PUNTO DE FUSIÓN:

APARATO DE FISHER-JOHNS:

Se proporcionarán tres sustancias patrón con punto de fusión (pf) conocido y se determinará el rango de punto de fusión experimental.

APARATO DE FISHER-JOHNS:

Con base en el punto de fusión conocido de cada patrón investigado en la literatura, se calcula la velocidad óptima de calentamiento que se debe establecer en el reóstato del aparato Fisher-Johns a través de la fórmula:

Velocidad de calentamiento = pf conocido/ 4

Las muestras deben colocarse entre dos capilares de 8 mm de diámetro.

APARATO STUART:

En el caso de emplear el equipo Stuart, se debe establecer el valor del punto de fusión conocido en el aparato e iniciar el calentamiento, observar el rango de fusión como en el caso anterior. Las muestras se deben colocar en la parte central de tubos capilares de 7 cm de largo o en el fondo de tubos capilares bien cerrados en un extremo.

No olvidar que deben colocarse cantidades muy pequeñas de los sólidos en los cubreobjetos o capilares, según sea el caso, en el equipo a utilizar.

Las determinaciones se comienzan con el patrón de menor punto de fusión y deben tomarse los valores de temperatura en que el sólido empieza a fundir y cuando termina, es decir, el rango de fusión. Los resultados se anotan en la siguiente tabla:

Tabla 1. Puntos de fusión de los estándares usados en la calibración.

Patrón	Punto de fusión de la literatura (°C)	Rango de pf experimental (°C)

Se traza una gráfica de calibración del aparato de medición (Figura 1), colocando en las abscisas los puntos de fusión investigados en la literatura y en las ordenadas los puntos de fusión obtenidos experimentalmente. Esta gráfica se utiliza para corregir los puntos de fusión experimentales que se determinarán posteriormente, localizando primero en las ordenadas el valor experimental determinado e interpolando hacia las abscisas para encontrar el rango de punto de fusión corregido sobre las abscisas.

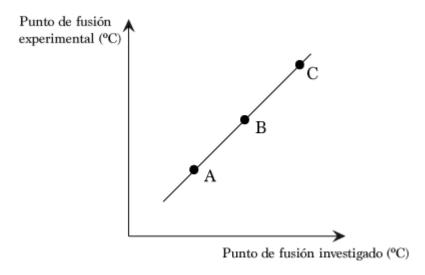


Figura 1. Gráfica para la calibración del termómetro del aparato a utilizar.

I. PUREZA E IDENTIFICACIÓN:

Se proporcionará una muestra de alguno de los sólidos enlistados como "sólidos problema" que se encuentran en la sección "REACTIVOS", al que le determinará la pureza y se identificará:

a) PUREZA:

Determinar el rango de fusión del sólido problema:

En el aparato Fisher-Johns primero se usará una velocidad de calentamiento de 50, para conocer su valor aproximado. Con este valor obtenido, calcular la velocidad óptima, con la fórmula anteriormente mencionada, y hacer una segunda determinación del rango de fusión con esta velocidad óptima. Determinar la pureza del sólido problema a partir del valor determinado.

En el aparato Stuart se deberá ir subiendo la temperatura programada en el aparato según los valores investigados en la literatura. Con el rango de punto de fusión obtenido, determinar la pureza de la sustancia problema.

b) IDENTIFICACIÓN:

Corregir el valor experimental del rango de punto de fusión obtenido en el punto anterior con ayuda de la gráfica de calibración del aparato de medición usado. Comparar este valor con los investigados de los posibles productos problema y elegir el que se considere más cercano.

Aparato Fisher Johns:

Hacer una mezcla 1:1 del sólido problema y el patrón en un vidrio de reloj y colocar pequeñas cantidades del sólido problema, el patrón y la mezcla en un cubreobjetos sin que éstas se mezclen. Determinar el rango de punto de fusión de cada uno de los sólidos y de la mezcla (Figura 2).

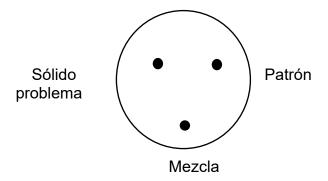


Figura 2. Determinación de punto de fusión mixto

Aparato Stuart:

Coloca la mezcla, el sólido problema y el patrón en tubos capilares y determina el rango de punto de fusión de cada uno de ellos.

Analiza los valores determinados y establece si es posible identificar al sólido problema.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., Microscale Organic Laboratory: with Multistep and Multiscale Syntheses, 5 ed., USA, Wiley, 2011.
- Brewster R. Q., van der Wert C. A., McEwen W. E., *Curso Práctico de Química Orgánica*, 2 ed., Madrid, Alhambra, 1979.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5ed, Brooksand Cole, USA, 2010.
- Vogel A. I., *Practical Organic Chemistry*, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., *A Small scale Approach to Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., Understanding the Principles of Organic Chemistry: A Laboratory Course, Brooks and Cole, USA, 2011.

Apéndice I: Conocimientos previos

- Concepto de punto de fusión
- Factores que determinan el punto de fusión a nivel molecular.
- Valores de puntos de fusión de sustancias puras e impuras.
- Concepto de mezcla eutéctica y valores de punto de fusión para ellas.
- Técnica de punto de fusión mixto.

- Métodos y equipos para determinar el punto de fusión. Por ejemplo, Tubo de Thiele, Fisher-Johns, Thomas-Hoover, Büchi, etc.
- Técnicas de calibración de un termómetro.
- Estructura, propiedades físicas, propiedades químicas, riesgos a la salud y de inflamabilidad y acciones en caso de emergencia de los productos químicos a utilizar.

Apéndice II: Cuestionario

- 1.- ¿De qué manera puede saber el grado de pureza de un sólido orgánico?
- 2.- ¿Qué importancia tiene calcular la velocidad de calentamiento en las determinaciones de rango de punto de fusión al utilizar el aparato Fisher-Johns?
- 3.- ¿Es correcto afirmar que dos muestras de igual punto de fusión son la misma sustancia? Explique ampliamente.
- 4.- ¿Cuál es el efecto de la presencia de impurezas en el valor de punto de fusión de una sustancia orgánica?
- 5.- ¿Por qué debe calibrarse el aparato de medición de punto de fusión?
- 6.- ¿Puede utilizarse la gráfica de calibración de un aparato de Fisher-Johns para trabajar en otros aparatos similares? Explica ampliamente.
- 7.- ¿Qué otras técnicas existen para determinar el punto de fusión de un sólido orgánico?
- 8.- ¿Por qué es necesario hacer una mezcla del patrón y la muestra problema para la identificación de esta última?
- 9.- ¿Cuál es la característica distintiva de las mezclas eutécticas?

Apéndice III: Disposición de residuos

RESIDUOS			
D1. Capilares impregnados	D3. Sólidos orgánicos		
D2. Metanol-acetona	D4. Cubreobjetos rotos		

- D1, D3 y D4: Enviar a incineración.
- **D2**: Guardar los disolventes para recuperar por destilación al final del semestre.

PRÁCTICA No. 2 CRISTALIZACIÓN SIMPLE

OBJETIVOS ACADÉMICOS

- Conocer las características que debe tener un disolvente ideal para ser utilizado en una cristalización y la forma en que se escoge
- Saber cuándo se debe utilizar un adsorbente como el carbón activado.
- Realizar la cristalización simple de un sólido.
- Comprobar la pureza del sólido cristalizado.

PROBLEMA

El alumno efectuará una cristalización simple a una muestra y confirmará su purificación a través del punto de fusión.

REACTIVOS

Sustancia problema: ácido benzoico, ácido bencílico, ácido cinámico, dibenzalacetona, nipagín, acetanilida, ácido fenoxiacético, ácido acetilsalicílico, entre otros.

Hexano Agua destilada
Acetato de etilo Carbón activado

Acetona Celita Etanol Metanol

EQUIPO

$-\infty$			
1	Agitador de vidrio	1	Vaso de precipitados de 150 mL
1	Barra magnética de agitación	1	Vidrio de reloj
1	Embudo de vidrio sinterizado con alargadera	1	Espátula Cr- Ni de 20 cm
1	Embudo de filtración rápida	1	Gradilla
3	Matraz Erlenmeyer de 50mL	1	Parrilla con agitación magnética
		1	Pinza de tres dedos con nuez
1	Matraz Kitasato de 125 mL con manguera	1	Pinza para tubo de ensayo
1	Pipeta de 10 mL	1	Recipiente eléctrico para baño María
1	Probeta de 25 mL	1	Recipiente de peltre
6	Tubos de ensayo 16x150 mm	1	Aparato Fisher-Johns o Stuart
2 (cubreobjetos o tubos capilares	1	Nave de pesado

DESARROLLO EXPERIMENTAL

Muchos de los disolventes usados deben trabajarse en áreas bien ventiladas pues pueden provocar somnolencia y/o mareo. Por ello, no los evapores en las mesas de trabajo para evitar que se acumulen los vapores en el medio ambiente del laboratorio

II. SOLUBILIDAD EN DISOLVENTES ORGÁNICOS.

En 6 tubos de ensayo se coloca la punta de una espátula (aproximadamente 0.1 g) de muestra problema y se adiciona 1 mL del disolvente (ver Tabla 1), se agita y se observa.

Si el sólido no se disolvió, se agrega 1 mL más y se observa con cuidado (pueden quedar impurezas insolubles). Si no se disolvió toda la muestra se repite por última vez el procedimiento hasta obtener 3 mL máximo del disolvente.

Si no se logró disolver el sólido, se puede decir que es insoluble en frío, por lo tanto, se calienta la muestra en un baño María hasta ebullición adicionando una pequeña cantidad de cuerpos de ebullición (cuerpos porosos o piedras de ebullición) y agitación constante, teniendo precaución de mantener inalterado el volumen de la solución. Si la muestra no se disolvió, se puede decir que es insoluble en caliente.

Si la muestra es soluble en caliente, se enfría a temperatura ambiente y luego en un baño de hielo-agua. Se observa si hay formación de cristales, anotando todos sus resultados en la Tabla 1.

Tabla 1. Solubilidad en disolventes orgánicos.

Disolventes	Hexano	Acetato de	Acetona	Etanol	Metano	Agua
		etilo			I	
Soluble en frío						
Soluble en caliente						
Formación de						
cristales						

III. CRISTALIZACIÓN SIMPLE

Conservar unos cuantos granitos de la muestra para determinar el punto de fusión al final de la cristalización y observar la comparación entre el compuesto purificado y no purificado, el resto de la muestra se pesa y se coloca en un matraz Erlenmeyer, es importante agregar una barra magnética o cuerpos de ebullición. En otro matraz Erlenmeyer se calienta el disolvente ideal con cuerpos de ebullición y se calienta (aproximadamente 30 mL como máximo). Se agrega poco a poco el disolvente ideal caliente al matraz con la muestra agitando constantemente hasta obtener una disolución total de la muestra (entre 15-20 mL de disolvente ideal), máximo 30 mL del disolvente.

Si la muestra contiene *impurezas coloridas o resinosas*, se retira el matraz de la fuente de calentamiento, se deja enfriar un poco (¡NUNCA SE AGREGA EL CARBÓN ACTIVADO CON LA SOLUCIÓN MUY CALIENTE!) y se agrega la cantidad necesaria de carbón activado, se adicionan cuerpos de ebullición y se calienta nuevamente a ebullición con agitación constante por 3 minutos más. El matraz se calienta por 3 minutos, cuidando de mantener constante el volumen de disolvente. Para eliminar las impurezas insolubles y el carbón activado (si se usó), entonces, se filtra en caliente (filtración rápida). El embudo de vidrio y el matraz en el que se recibirá el filtrado se deben calentar previamente (algunas ocasiones, el filtrado queda con restos de carbón activado como polvo muy fino, en este caso, es necesario calentar nuevamente la solución y se filtra con una capa de celita). Este paso debe hacerse rápidamente, para evitar que el producto cristalice en el embudo de vidrio. Para filtrar en caliente, se dobla el papel filtro como se observa en la Figura 1.

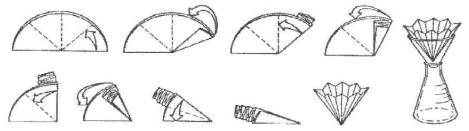
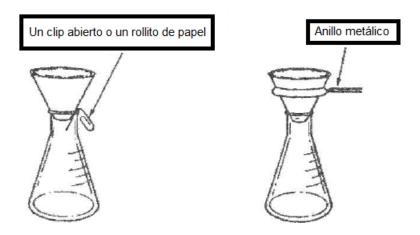



Figura 1. Doblado de papel filtro para filtración rápida.

El embudo se coloca sobre el matraz dejando un hueco entre ambos para que "respire" (Figura 2). El papel filtro se humedece con un poco con el disolvente ideal caliente y se filtra rápidamente. El matraz y el papel filtro se enjuagan con un poco del disolvente caliente (2 a 3 mL).

Se deja enfriar el filtrado a temperatura ambiente y luego en un baño de hieloagua para que se formen los cristales, si esto no ocurre, se debe *inducir la cristalización*.

Figura 2. Maneras para crear un espacio entre el embudo y el matraz para que "respire" el sistema al filtrar.

Para inducir la cristalización:

- **Enfriando la solución**. Se deja que la solución se enfríe un poco y posteriormente se coloca después en un baño de hielo-agua.
- Raspado de paredes. Se talla con una espátula o una varilla de vidrio las paredes del matraz (en la interfaz solución aire) y enfriando el matraz en un baño de hielo-agua.
- **Evaporando el exceso de disolvente**. Si no cristaliza, posiblemente se deba a que hay un exceso de disolvente; en tal caso, se agregan cuerpos de ebullición y se evapora parte del disolvente. Nuevamente se retira de la fuente de calentamiento y se tallan las paredes con una espátula.
- Sembrado de cristales. Algunas veces, es necesario adicionar a la solución algunos cristales de la sustancia pura, y repetir el procedimiento de tallar y enfriar.

Una vez formados los cristales, se separan del disolvente madre por *filtración al vacío*. Para esto, se sujeta el matraz Kitasato con unas pinzas (para evitar que se caiga) y se conecta a la llave de vacío con una manguera. Dentro del embudo Büchner se coloca un círculo de papel filtro, cuidando que ajuste perfectamente y se coloca sobre el Kitasato con ayuda de un adaptador de hule. Se humedece el papel filtro con un poco del disolvente ideal frío, se abre la llave del vacío suavemente, sólo a que se fije el papel y se vierte el contenido del matraz de cristalización (primero se agita un poco el matraz Erlenmeyer y se vierte la solución de forma rápida para pasar la mayor cantidad de cristales). Para terminar de bajar los cristales, se puede utilizar una pequeña cantidad del mismo disolvente ideal frío (máximo 3 mL), con ayuda de la espátula.

Para secar los cristales, se deja que termine de filtrar la mayor parte del disolvente, una vez que deje de gotear, se cierra la llave del vacío y se retira el embudo Büchner; el líquido filtrado del Kitasato (disolvente madre) se pasa a un matraz Erlenmeyer y se vuelve a colocar el embudo y esta vez se abre toda la llave del vacío, para permitir que los cristales se sequen, colocando el vidrio de reloj encima del embudo Büchner para que este proceso sea más rápido.

Cuando el disolvente madre contienen aún bastante material, se realiza una **segunda cosecha**, el filtrado se concentra por ebullición, eliminando así el disolvente en exceso y volviendo a inducir la cristalización. Esta segunda cosecha generalmente es menos pura que la primera y no se deben mezclar, pero si se toma en cuenta para calcular el rendimiento. Se pesa el material obtenido y se le determina el punto de fusión.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., Microscale Organic Laboratory: with Multistep and Multiscale Syntheses, 5 ed., USA, Wiley, 2011.
- Brewster R. Q., van der Wert C. A., McEwen W. E., *Curso Práctico de Química Orgánica*, 2 ed., Madrid, Alhambra, 1979.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.

- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., A Small Scale Approach to Organic Laboratory Techniques, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry:* A Laboratory Course, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., Purification of Laboratory Chemicals, 6 ed., British, USA, 2009.

Apéndice I: Conocimientos previos

- Disolvente ideal:
 - a) Solubilidad como fenómeno físico.
 - b) Relación entre solubilidad y estructura molecular.
 - c) Disolventes orgánicos.
 - d) Propiedades físicas de los disolventes.
 - e) Solubilidad, polaridad y orden de polaridad de los disolventes.
 - f) Solvatación e hidratación.
- Cristalización:
 - a) Fundamentos de cristalización.
 - b) Selección de disolvente ideal.
 - c) Secuencia para realizar una cristalización simple con o sin carbón activado.
 - d) Métodos para inducir una cristalización.
 - e) Tipos de adsorbentes y fenómeno de adsorción.
 - f) Soluciones saturadas y sobresaturadas.
 - g) Diversos tipos de filtración.
 - h) Secado de productos cristalizados.
- Estructura, propiedades físicas, propiedades químicas, riesgos a la salud y de inflamabilidad y acciones en caso de emergencia de los productos químicos a utilizar.

Apéndice II: Cuestionario

- 1. ¿Cuándo un disolvente es ideal para efectuar una cristalización?
- 2. ¿Qué función cumple el carbón activado en una cristalización?
- 3. Con los resultados obtenidos, ¿cuál es el grado de polaridad de su muestra problema?
- 4. ¿Qué cualidades debe cumplir un disolvente ideal para ser utilizado en una cristalización?

- 5. ¿Por qué razón deben de calentarse el embudo de vidrio y el matraz donde se recibe el filtrado?
- 6. ¿De qué manera puede saber el grado de pureza de un sólido recristalizado?
- 7. Enumerar y describir brevemente, el número de paso para llevar a cabo una recristalización adecuadamente.
- 8. ¿Por qué no es aconsejable adicionar carbón activado sobre una solución cercana al punto de ebullición del disolvente?

Apéndice III.- Disposición de residuos

RESIDUOS			
D1. Hexano	D6. Agua		
D2. Acetato de etilo	D7. Papel filtro, algodón, celita		
D3. Acetona	D8. Cubre-objetos rotos		
D4. Etanol	D9. Acetona/metanol		
D5. Metanol			

- **D1-D6**, **D9**: Recuperar por destilación al final del semestre.
- **D7-D8:** Empacar y enviar a incineración.

PRÁCTICA No. 3 CRISTALIZACIÓN POR PAR DE DISOLVENTES

OBJETIVOS ACADÉMICOS

- Conocer la utilidad de la solubilidad en una cristalización.
- Conocer las características que deben de tener el par de disolventes para ser utilizados en una cristalización y como elegirlos.
- Realizar la cristalización por par de disolventes de un sólido.
- Comprobar la pureza del sólido cristalizado.

PROBLEMA

El alumno efectuará una cristalización por par de disolventes a una muestra y confirmará su purificación a través del punto de fusión.

REACTIVOS

Metanol

Hexano Agua destilada Acetato de etilo Carbón activado

Acetona Celita

Etanol

Sustancia problema: 7-hidroxi-4-metilcumarina, benzoato de fenilo, 1,2,3,4-tetrahidrocarbazol, benzoína y nipasol.

EQUIPO

1	Agitador de vidrio	1	Vaso de precipitados de 150 mL
1	Barra magnética de agitación	1	Vidrio de reloj
1	Embudo de vidrio sinterizado con alargadera	1	Espátula Cr- Ni de 20 cm
1	Embudo de filtración rápida	1	Gradilla
3	Matraz Erlenmeyer de 50mL	1	Parrilla con agitación magnética
		1	Pinza de tres dedos con nuez
1	Matraz Kitasato de 125 mL con manguera	1	Pinza para tubo de ensayo
1	Pipeta de 10 mL	1	Recipiente eléctrico para baño María
1	Probeta de 25 mL	1	Recipiente de peltre
6	Tubos de ensayo 16x150 mm	1	Aparato Fisher-Johns
2	cubreobjetos o tubos capilares	1	Nave de pesado

DESARROLLO EXPERIMENTAL

Muchos de los disolventes usados deben trabajarse en áreas bien ventiladas pues pueden provocar somnolencia y/o mareo. Por ello, no los evapores en las mesas de trabajo para evitar que se acumulen los vapores en el medio ambiente del laboratorio.

I. SOLUBILIDAD EN DISOLVENTES ORGÁNICOS (PAR DE DISOLVENTES)

En 6 tubos de ensayo se coloca la punta de una espátula (aproximadamente 0.1 g) de muestra problema. Se adiciona 1 mL del disolvente (ver Tabla 1), se agita y se observa. Si no se disolvió toda la muestra se repite el procedimiento hasta obtener 3 mL de disolvente máximo. Si no se logró disolver el sólido, se puede decir que es insoluble en frío, por lo tanto, se calienta la muestra a baño María hasta ebullición adicionando cuerpos de ebullición y con agitación constante, cuidando de mantener inalterado el volumen de la solución. Si la muestra se disuelve, se enfría a temperatura ambiente y luego en un baño de hielo-agua. Se observa si hay formación de cristales anotando todos los resultados en la Tabla 1.

Tabla 1. Solubilidad en disolventes orgánicos.

Disolventes	Hexano	Acetato de etilo	Acetona	Etanol	Metano I	Agua
Soluble en frío						
Soluble en caliente						

Una vez que se ha encontrado el par de disolventes, donde, en uno la sustancia es muy soluble y en el otro es insoluble (en frío y en caliente) se debe comprobar que ambos disolventes son miscibles.

II. CRISTALIZACIÓN POR PAR DE DISOLVENTES

Antes de pesar la muestra conservar unos cuantos granitos de la muestra para determinar el punto de fusión al final de la cristalización y observar la comparación de los mismos. Se pesa el resto de la muestra y se coloca en un matraz Erlenmeyer, no se debe olvidar agregar cuerpos de ebullición. En otro matraz Erlenmeyer se calienta el disolvente en el cual la muestra fue soluble con cuerpos de ebullición y se calienta (aproximadamente 30 mL). Se agrega poco a poco el disolvente caliente agitando constantemente, hasta obtener una disolución total de la muestra (entre 10-15 mL de disolvente), máximo 20 mL de disolvente.

Si la muestra contiene *impurezas coloridas o resinosas,* antes de filtrar en caliente, se adiciona el carbón activado (recordando retirar el matraz de la fuente de calentamiento y permitiendo que se enfríe un poco, antes de adicionar el carbón

activado), se calienta nuevamente a ebullición por 3 minutos con agitación constante y se *filtra* en *caliente* (filtración por gravedad).

El filtrado se concentra un poco y se agrega, **gota a gota**, el disolvente en el cual la muestra es insoluble, hasta observar una solución turbia. Se agita la solución y si la turbidez desaparece, se continúa agregando gota a gota el disolvente en el cual la muestra no es soluble hasta que la turbidez permanezca. Entonces se agregan unas cuantas gotas del primer disolvente (caliente) para eliminar la turbidez y evitar que haya material precipitado. La solución saturada resultante, se deja enfriar a temperatura ambiente, posteriormente se deja en un baño de hielo-agua, induciendo la cristalización. Una vez formados los cristales, se separan del disolvente madre por **filtración al vacío** y se dejan secar.

Para obtener material adicional (segunda cosecha), del disolvente madre se pueden concentrar un poco, cuidando de que el disolvente que se elimine sea aquel en el que el producto sea más soluble. Finalmente, cuando los cristales estén totalmente secos, se pesan para calcular el rendimiento y se determina el punto de fusión.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., *Microscale Organic Laboratory: with Multistep and Multiscale Syntheses*, 5 ed., USA, Wiley, 2011.
- Brewster R. Q., van der Wert C. A., McEwen W. E., *Curso Práctico de Química Orgánica*, 2 ed., Madrid, Alhambra, 1979.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., A Small scale Approach to Organic Laboratory Techniques, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry: A Laboratory Course*, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., *Purification of Laboratory Chemicals*, 6 ed., British, USA, 2009.

Apéndice I: Conocimientos previos

- Par de disolventes:
 - a) Relación entre solubilidad y estructura molecular.
 - b) Efecto de las fuerzas intermoleculares en la solubilidad.
 - c) Disolventes próticos y apróticos
 - d) Importancia de las pruebas de solubilidad en cristalización.

- e) Interpretación de las pruebas de solubilidad relacionadas con la estructura del compuesto.
- f) Polaridad, solubilidad y orden de polaridad de los disolventes.
- g) Precauciones indispensables para el manejo de los disolventes.
- Cristalización:
 - a) Fundamentos de cristalización.
 - b) Secuencia para realizar una cristalización por par de disolventes.
 - c) Cualidades del par de disolventes para llevar a cabo una cristalización.
 - d) Selección de pares de disolventes y par de disolventes más comunes.
 - e) Efecto de la velocidad de formación de los cristales en su tamaño y pureza.

Apéndice II: Cuestionario

- 1. ¿Por qué es importante mantener el volumen de la solución durante el calentamiento?
- 2. ¿Por qué es necesario eliminar la turbidez de la solución?
- 3. ¿Qué cualidades presentaron cada uno de los disolventes para ser usados en una cristalización por par de disolventes?
- 4. ¿En qué consiste el sembrado de cristales y para qué hace la siembra de estos?
- 5. ¿Cuáles son las diferencias que encuentras entre la sustancia purificada y sin purificar?
- 6. En el proceso de cristalización se efectúan dos tipos de filtraciones, ¿en qué se diferencian? y ¿qué tipo de impurezas se eliminan en cada una de ellas?
- 7. Indicar las diferencias entre una cristalización simple y un por par de disolventes.
- 8. Por qué si o no elegiría como disolvente de recristalización, un líquido cuyo punto de ebullición supere el punto de fusión del sólido a recristalizar. Justifique la respuesta.

Apéndice III: Disposición de residuos

RESIDUOS			
D1 . Hexano	D8. Metanol-agua		
D2. Acetato de etilo	D9 . Etanol-agua		
D3. Acetona	D10. Acetona-agua		
D4 . Etanol	D11. Hexano-acetato de etilo		
D5. Metanol	D12. Cubre-objetos rotos		
D6 . Agua	D13. Metanol/acetona		
D7. Papel filtro, algodón, celita			

- **D1-D5**, **D8-D11**, **D13**: Recuperar por destilación al final del semestre.
- **D6.** Filtrar sólidos y enviar a incineración, el filtrado neutralizar y desechar al drenaje.
- **D7**, **D12**: Empacar y enviar a incineración.

PRÁCTICA No. 4 DESTILACIÓN SIMPLE Y FRACCIONADA

OBJETIVOS ACADÉMICOS

- Conocer el procedimiento de una destilación simple y una fraccionada, así como sus características y los factores que intervienen en ellas.
- Separar los componentes de una mezcla binaria por medio de una destilación simple o fraccionada.
- Elegir la técnica de destilación más adecuada, en función de la naturaleza del líquido o mezcla de líquidos que se van a destilar.

PROBLEMA

El alumno separará los componentes principales de una bebida alcohólica mediante una destilación simple y una fraccionada y establecerá cuál método es mejor para su separación.

REACTIVOS

Muestra problema: 30 mL de una bebida alcohólica que traerá el estudiante.

EQUIPO

LW	UIFO		
1	Colector	1	Refrigerante para agua con mangueras
1	Columna Vigreux	1	T de destilación
1	Embudo de filtración rápida	1	Termómetro de -10-260 °C de alcohol
1	Matraz Erlenmeyer de 50 mL	1	Barra de agitación magnética
1	Matraz de fondo plano de 25 mL	1	Parrilla con agitación magnética
1	Portatermómetro	2	Pinzas de tres dedos con nuez
2	Probetas de 25 mL	1	Espátula Cr-Ni de 20 cm
1	Recipiente de peltre	1	

DESARROLLO EXPERIMENTAL

I.DESTILACIÓN FRACCIONADA DE UNA MEZCLA.

NOTA: Se deben engrasar con una pequeñísima cantidad de vaselina todas las juntas esmeriladas correspondientes al equipo de destilación. Un exceso de grasa contaminaría el refrigerante y la muestra destilada.

En un matraz bola de fondo plano de 25 mL se coloca la barra de agitación magnética y con la ayuda de un embudo de vidrio se adicionan 10 mL de la mezcla problema, con una pinza de tres dedos se sujeta el cuello del matraz cuidando que quede bien colocado sobre la parrilla.

Se coloca la columna Vigreux cubriéndola con un poco de fibra de vidrio, un trapo o aluminio, enseguida se coloca la T de destilación como se observa en la Figura 1, con otra pinza de tres dedos se sujeta el refrigerante y el colector, las fracciones del destilado se colectan en la probeta (Figura 1). Finalmente se coloca el portatermómetro junto con el termómetro como se indica en la Figura 1. Cuando el equipo esté completamente montado se enciende la agitación de la parrilla y después se inicia el calentamiento, dejando de 1 a 2 mL de cola de destilación.

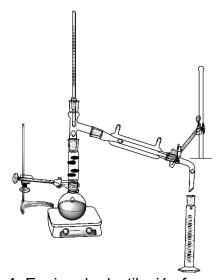


Figura 1. Equipo de destilación fraccionada.

Se anota la temperatura de destilación por cada medio mililitro obtenido en la Tabla 1. Con base en las variaciones de temperatura se deben separar cabeza, primer componente (cuerpo), fracción intermedia (cola de primer componente y cabeza del segundo componente), segundo componente (cuerpo) y finalmente la cola de destilación.

Tabla 1. Destilación fraccionada de una mezcla.

Volumen del destilado (mL)	Temperatura de destilación (°C)	Volumen del destilado (mL)	Temperatura de destilación (°C)
0.5		5.5	
1.0		6.0	
1.5		6.5	
2.0		7.0	
2.5		7.5	
3.0		8.0	
3.5		8.5	
4.0		9.0	
4.5		9.5	
5.0		10.0	

Tabla 2. Resumen de resultados.

Fracción de la destilación	Temperaturas de destilación (°C)	Volumen (mL)
Cabeza		
1 [∞] Componente		
Fracción intermedia		
2º Componente		
Cola		

II. DESTILACIÓN SIMPLE DE UNA MEZCLA

Para esta parte de la práctica utilizar 10 mL de la mezcla problema la cual se adicionará al mismo matraz bola de 50 mL sin necesidad de lavarlo. Se realiza nuevamente el montaje del equipo **sin colocar la columna Vigreux** (Figura 2), una vez montado el equipo se agita y se comienza el calentamiento, dejando de 1 a 2 mL de cola de destilado.

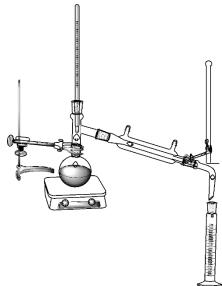


Figura 2. Equipo de destilación simple.

De acuerdo con las variaciones de temperatura por cada medio mililitro de destilado, se deben separar las tres fracciones de la destilación anotando los resultados en la Tabla 3.

Tabla 3. Destilación simple de una mezcla.

Volumen del destilado (mL)	Temperatura de destilación (°C)	Volumen del destilado (mL)	Temperatura de destilación (°C)
0.5		5.5	
1.0		6.0	
1.5		6.5	
2.0		7.0	
2.5		7.5	
3.0		8.0	
3.5		8.5	
4.0		9.0	
4.5		9.5	
5.0		10.0	

Con estos datos, realiza una tabla similar a la tabla 2 para esta destilación.

Con los resultados obtenidos se trazan dos gráficas en papel milimétrico o en Excel, una para cada tipo de destilación, colocando en las abscisas los volúmenes del destilado y en las ordenadas las temperaturas de destilación. Observando estas gráficas se puede determinar la mejor para la separación de la mezcla usada.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., *Microscale Organic Laboratory: with Multistep and Multiscale Syntheses*, 5 ed., USA, Wiley, 2011.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., A Small Scale Approach to Organic Laboratory Techniques, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry: A Laboratory Course*, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., *Purification of Laboratory Chemicals*, 6a ed., Elsevier, USA, 2009.

Apéndice I: Conocimientos previos

- Diagramas de composición líquido-vapor.
- Características y diferencias de la destilación simple y fraccionada.
- Funcionamiento de una columna de destilación fraccionada.
- Concepto de plato teórico y número de platos teóricos.

- Mezclas azeotrópicas.
- Ley de Raoult.
- Estructura, propiedades físicas, propiedades químicas, riesgos a la salud y de inflamabilidad y acciones en caso de emergencia de los productos químicos a utilizar.

Apéndice II: Cuestionario

- 1. Compare los resultados experimentales de las destilaciones y diga tres razones de aquella que le pareció más eficaz.
- 2. ¿Cuándo es recomendable utilizar destilación simple y cuándo la destilación fraccionada?
- 3. ¿Qué criterio siguió para separar las diferentes fracciones durante las destilaciones? Explique.
- 4. ¿Se podría separar por destilación simple una mezcla de dos líquidos de puntos de ebullición de 55 °C y 76 °C? y ¿por destilación fraccionada? Finalmente, ¿qué líquido se obtendría primero?
- 5. ¿Qué finalidad tiene el plato teórico?
- 6. ¿Qué establece la Ley de Raoult?
- 7. ¿Qué finalidad tiene conectar el agua a contracorriente en el refrigerante?
- 8. ¿Cómo separaría los componentes de una mezcla de carbón activado, acetona y agua?
- 9. Para una destilación fraccionada de dos componentes líquidos de punto de ebullición diferentes, ¿cómo son las composiciones de los líquidos en la parte superior de la columna Vigreux en comparación con los de la parte inferior?

Apéndice III Disposición de residuos

Aponaice in Biopocicion	40 10010		
RESIDUOS			
D1. Cabeza y cola de des	stilación		

• **D1:** Hacer prueba de compatibilidad para enviar a incineración.

PRÁCTICA No. 5 PUNTO DE EBULLICIÓN: DESTILACIÓN SIMPLE Y A PRESIÓN REDUCIDA

OBJETIVOS ACADÉMICOS

- Conocer los procesos de destilación simple a presión ambiental y a presión reducida, sus características y los factores que intervienen en ellas.
- Correlacionar los resultados experimentales de los puntos de ebullición y la masa molecular o el número de átomos de carbono y la estructura de una familia de compuestos orgánicos mediante una gráfica.
- Emplear la técnica adecuada de destilación simple a presión ambiental o a presión reducida, en función de la naturaleza del líquido a destilar.
- Aplicar la técnica de destilación a presión reducida en la purificación y separación de líquidos con baja presión de vapor.

PROBLEMAS

- El alumno separará los componentes principales de un anticongelante comercial mediante una destilación a presión reducida y determinará la presión de trabajo.
- El alumno comprobará la relación entre el punto de ebullición y la estructura de una serie de alcoholes alifáticos.

REACTIVOS

Acetona

n-Propanol
2- Propanol
Agua

n-Butanol
Metanol
iso-Butanol
Etanol
2-Butanol

15 mL de anticongelante para auto concentrado

EQUIPO

1	Colector	2	T de destilación
1	Embudo de filtración rápida	1	Termómetro -10 a 260°C de alcohol
2	Matraces bola de 25 mL	1	Vaso de precipitados de 250 mL
1	Matraz Kitasato de 125 mL con manguera	1	Barra de agitación magnética
1	Matraz de fondo plano de 25 mL	1	Manguera para vacío con tapón

- 1 Portatermómetro
- 2 Probetas de 25 mL
- 1 Refrigerante para agua con mangueras
- 1 T de vacío

- 1 Parrilla con agitación magnética
- 3 Pinzas de tres dedos con nuez
- 1 Recipiente de peltre
- Grapas de plástico para juntas esmeriladas

DESARROLLO EXPERIMENTAL

I. DESTILACIÓN SIMPLE DE UN ALCOHOL.

Se deben engrasar con una pequeñísima cantidad de vaselina todas las juntas esmeriladas correspondientes al equipo de destilación. Un exceso de grasa contaminará el refrigerante y la muestra destilada.

En un matraz bola de 25 mL se coloca una barra de agitación magnética y con ayuda de un embudo de vidrio se adicionan 10 mL de un alcohol, con una pinza de tres dedos se sujeta el cuello del matraz cuidando que quede bien colocado sobre la parrilla, se coloca la T de destilación como se observa en la Figura 1, con otra pinza de tres dedos se sujeta el refrigerante y el colector, las fracciones del destilado se colectaran en las probetas (Figura 1). Finalmente se coloca el portatermómetro junto con el termómetro como se indica en la Figura 1. Cuando el equipo este completamente montado se enciende la agitación de la parrilla y después se inicia el calentamiento, cuidando de dejar de 1 a 2 mL de cola de destilación.

Se anota la temperatura a la cual el líquido empieza a destilar hasta que la temperatura se mantenga constante (cabeza). Al permanecer constante la temperatura, cambie inmediatamente la probeta para recibir ahora todo el destilado a esa temperatura (cuerpo). Finalmente deje en el matraz el residuo que ya no destila (cola).

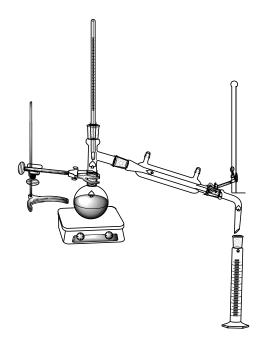


Figura 1. Equipo de destilación simple.

Entregue al profesor el alcohol (cuerpo de la destilación) y anote los resultados en la Tabla 1. Con los datos de punto de ebullición del grupo llene la Tabla 2.

Tabla 1. Fracciones de una destilación simple.

Fracción de la destilación	Temperatura de ebullición (°C)	Volumen (mL)
1 cabeza		
2 cuerpo		
3 cola		

Tabla 2. Punto de ebullición de alcoholes lineales vs. No. de átomos de C.

Sustancia	Masa molecular(uma)	No. de átomos de C	Punto de ebullición (°C)
Metanol			
Etanol			
<i>n</i> -Propanol			
isopropanol			
<i>n</i> -Butanol			

II. DESTILACIÓN A PRESIÓN REDUCIDA.

NOTA: Se deben engrasar con vaselina (utilizar la mínima cantidad) todas las juntas esmeriladas correspondiente al equipo de destilación.

En un matraz bola de fondo plano de 25 mL se coloca una barra de agitación magnética y con ayuda de un embudo de vidrio se colocan 10 mL de una mezcla problema, con una pinza de tres dedos se sujeta el cuello del matraz cuidando que el matraz quede bien colocado sobre la parrilla, posteriormente se coloca la T de destilación y el refrigerante como se muestra en la Figura 2.

La T de vacío (se debe conectar con una manguera a un matraz kitasato sumergido en un baño de hielo-agua y no directamente a la llave de vacío), después la segunda T de destilación soportándolos con una pinza de tres dedos. Se colocan los matraces bola de 25 mL sujetados con una liga al resto del equipo. Finalmente se coloca el portatermómetro en la primera T de destilación junto con el termómetro (el termómetro debe estar bien ajustado para que al hacer vacío al sistema no se resbale y se rompa el matraz). Una vez montado el equipo completo como se muestra en la Figura 2, se enciende la agitación de la parrilla y se abre la llave del vacío poco a poco para que se regule la presión dentro del sistema y espere de 5 a 10 minutos antes de comenzar con el calentamiento.

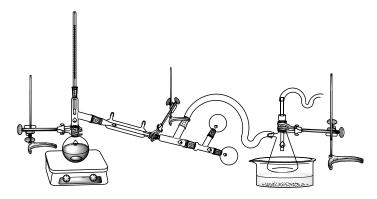


Figura 2. Equipo de destilación a presión reducida.

De acuerdo con las variaciones de temperatura que se observan se deben separar las diferentes fracciones (cabeza y cuerpo de la destilación). Cuando termine la destilación (sin permitir que el matraz llegue a sequedad) se suspende el calentamiento, se retira con cuidado la parrilla. Se deja enfriar el sistema y se cierra la llave de vacío. Finalmente se desmonta el equipo de destilación comenzando con los matraces de 25 mL que contienen las fracciones destiladas. Se miden los volúmenes obtenidos en cada fracción y se anotan los volúmenes y las temperaturas de cada una de las fracciones en la Tabla 3. Se entregan al profesor las fracciones separadas.

Tabla 3. Datos de destilación a presión reducida.

Fracción	Temperatura de destilación (°C)	Volumen (mL)	Presión (mmHg)
1			
2			

Finalmente, en la Tabla 4 se localiza el grupo al que pertenece la sustancia que se destiló, y en el nomograma (Figura 3 o 4) con los datos de temperatura, el grupo al que pertenece la sustancia y el dato de temperatura normal se determina la presión a la que se destiló la fracción principal.

Tabla 4. Grupos de los compuestos representados en los nomogramas.

Grupo 1	Grupo 3	Grupo 5
Antraceno	Acetaldehído	Ácido propiónico
Antraquinona	Acetona	Alcohol bencílico
Butiletileno	Ácido fórmico	Amoniaco
Fenantreno	Aminas	Fenol
Sulfuro de carbono	Cianuro de hidrógeno	Metilamina
Tricloroetileno	Cloroanilinas	
	Cloruro de cianógeno	Grupo 6
Grupo 2	Cloruro mercúrico	Ácido isobutírico
Alcanfor	Ésteres	Agua
Anhídrido ftálico	Éter metílico	Anhídrido acético
Benzaldehído	Metiletiléter	
Benzofenona	Naftoles	
Benzonitrilo	Nitrobenceno	Grupo 7
Dibencilacetona	Nitrometano	Ácido benzoico
Dimetilsilano	Óxido de etileno	Ácido butírico
Éteres	Tetranitrometano	Ácido heptanoico
Fosgeno		Ácido isocaproico
Hidrocarburos	Grupo 4	Ácido valérico
Hidrocarburos halogenados	Acetofenona	Alcohol metílico
Metiletilcetona	Ácido acético	Etilenglicol
Monóxido de carbono	Cianógeno	Propilenglicol
Nitrotoluidinas	Cloruro de nitrosilo	
Nitrotoluenos	Dimetilamina	Grupo 8
Quinolina	Dióxido de azufre	Alcohol amílico
Sulfocianuro de carbono	Etilamina	Alcohol etílico
Sulfuros	Formiato de metilo	Alcohol isoamílico
	Oxalato de dimetilo	Alcohol isobutílico
		Alcohol n-propílico
		Cloruro mercuroso

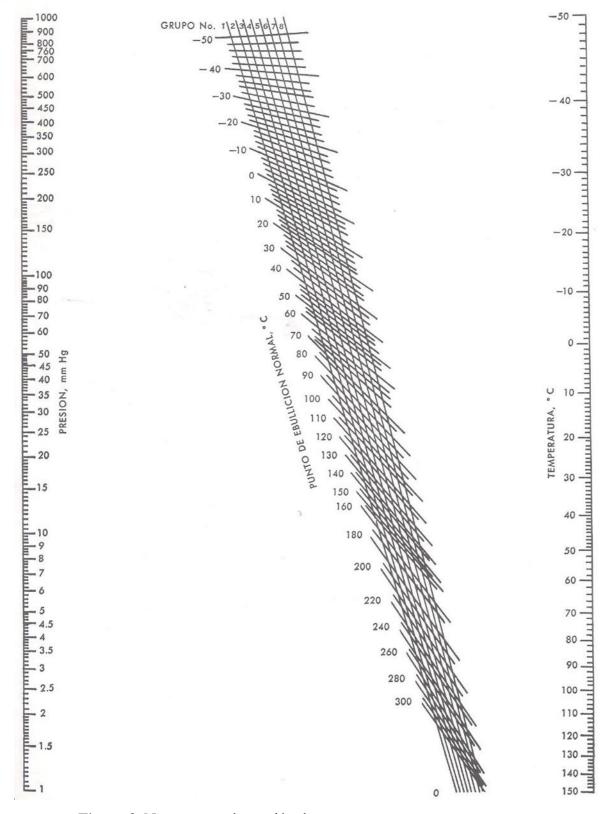


Figura 3. Nomograma de presión de vapor-temperatura.

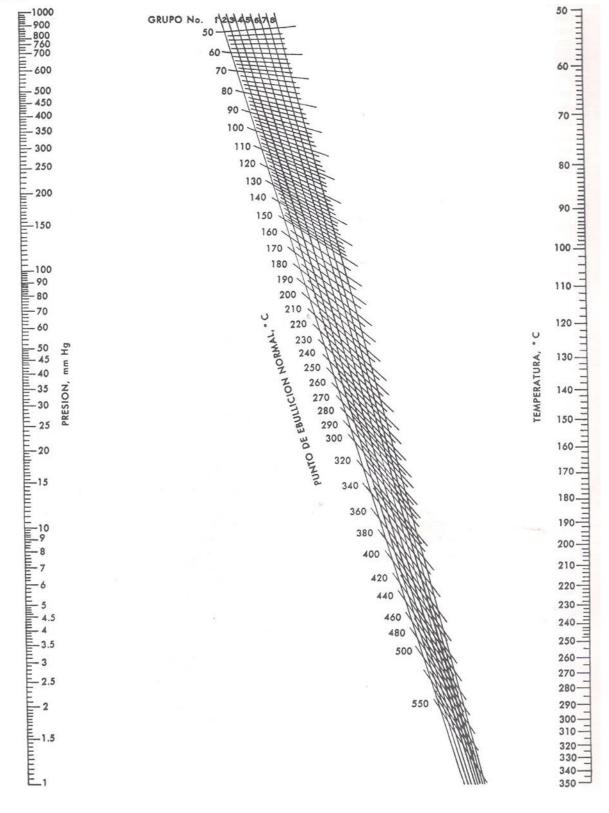


Figura 4. Nomograma de presión de vapor-temperatura.

REFERENCIAS BIBLIOGRÁFICAS

- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., A Small Scale Approach to Organic Laboratory Techniques, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry: A Laboratory Course*, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., *Purification of Laboratory Chemicals*, 6 ed., British, USA, 2009.
- Lippincott S. B., Lyman M. M., *Vapor Pressure–Temperature Nomographs, Industrial & Engineering Chemistry*, 38, 320, 1946.
- https://www.sigmaaldrich.com/MX/es/support/calculators-and-apps/pressuretemperature-nomograph-interactive-tool

Apéndice I: Conocimientos previos

- Investigar las propiedades físicas y la estructura molecular de alcanos y alcoholes.
- Relación entre estructura y sus propiedades físicas.
- Destilación a presión reducida. Relación entre la presión y la temperatura.
- Aplicaciones y características de una destilación a presión reducida.
- Características de los compuestos susceptibles de purificarse por destilación a presión reducida.
- La interpretación de un nomograma y el funcionamiento de un manómetro.

Apéndice II: Cuestionario

- 1. Cite tres formas de conocer la presión a la que destila una sustancia. Con base en los resultados experimentales, explique si este método de destilación es adecuado para purificar y separar líquidos.
- 2. Utilizando el nomograma determine las temperaturas de ebullición a las diferentes presiones.

P (mmHg)	Benzaldehído	Antraceno	P (mmHg)	Benzaldehído	Antraceno
760			300		
100			5		

- 3. ¿Cuál es la relación que existe entre la presión aplicada y la temperatura de ebullición de un líquido?
- 4. ¿En qué casos considera que la destilación a presión reducida es el método adecuado para la separación y purificación de estas?

- Ciclohexano-benceno
- Glicerol-etilenglicol
- Hexano-ciclopentano.
- 5. Un líquido orgánico comienza a descomponerse a 80 °C. Su presión de vapor a esa temperatura es de 36 mmHg. ¿Cómo podría destilarse?

Apéndice III: Disposición de residuos

	RESIDUOS	
D1. Cabeza y	cola de alcoholes	
D2. Cabeza y cola de destilación a presión reducida		

• **D1-D2**: Hacer pruebas de compatibilidad para enviar a incineración.

PRÁCTICA No 6 CROMATOGRAFÍA EN CAPA FINA

OBJETIVOS ACADÉMICOS

- Conocer la técnica de cromatografía en capa fina, sus características y los factores que en ella intervienen.
- Observar la relación que existe entre la polaridad de las sustancias que se analizan y la de los eluyentes y adsorbentes utilizados.
- Emplear la técnica de cromatografía en capa fina como criterio de pureza e identificación de sustancias.

PROBLEMAS

El alumno elaborará cromatoplacas y las eluirá para:

- Estudiar el efecto de la cantidad de muestra aplicada.
- Estudiar el efecto del uso de eluyentes de diferente polaridad en la distancia recorrida por las muestras usadas, establecer la polaridad de éstas con los resultados obtenidos.
- Estudiar el efecto de la presencia de Impurezas en las muestras usadas.
- Identificar los componentes de una muestra problema.

REACTIVOS

Gel de sílice 60 HF₂₅₄ para ccf Acetona

Benzoina Acetato de etilo

Ácido acetilsalicílico Hexano Cafeína Metanol

Muestra problema: 2 tableta de algún medicamento que contenga paracetamol que traerán por grupo.

EQUIPO

Frascos para cromatografía con 1 Tubo capilar

6 Portaobjetos 1 Vidrio de reloj

Probetas de 25 mL 1 Espátula Cr-Ni de 20 cm

2 Frascos viales

ADICIONAL

1 Lámpara de luz UV, onda larga y onda 1 Cámara de yodo corta

1 Cámara oscura para lámpara de luz UV

DESARROLLO EXPERIMENTAL

I. PREPARACIÓN DE CAPILARES

Para aplicar las soluciones a las cromatoplacas se utilizan capilares, que previamente deben ser estirados en la flama de un encendedor, con el fin de que tengan el diámetro adecuado (Figura 1).

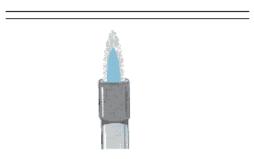


Figura 1. Preparación de capilares.

Para mayor claridad de los resultados, se deben incluir en el informe los dibujos de las cromatoplacas a tamaño natural de todos los experimentos de esta sesión.

II. APLICACIÓN DE LA MUESTRA Y EFECTO DE LA CANTIDAD DE MUESTRA

Se prepara la cámara de elución se coloca 2 mL de acetato de etilo, se tapa para que se humedezca completamente la cámara de elución (Figura 2).

Figura 2. Desarrollo de la cromatoplaca.

Para preparar la cromatoplaca con las muestras se marcan los 3 puntos de aplicación y se aplica con ayuda de un capilar una pequeña cantidad de la solución (1) en cada una de ellas 1, 3 y 9 aplicaciones (Figura 3) al borde inferior a 1 cm aproximadamente previamente marcado.

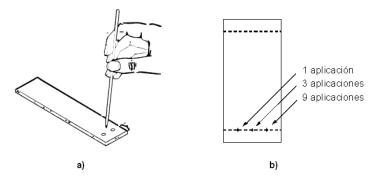


Figura 3. a) Aplicación de la muestra en la cromatoplaca, b) Número de aplicaciones.

Una vez que se realizó lo anterior se introduce la cromatoplaca a la cámara de elución. Cuando la cromatoplaca esté dentro de la cámara, no se debe mover la cámara de elución, cuando el frente de eluyente esté casi en el borde superior de la capa de gel de sílice, se abre el frasco con cuidado y se retira la cromatoplaca, se marca el frente del eluyente con un lápiz fino. La cromatoplaca se coloca en una hoja de papel, donde se anotarán los datos y se deja secar al aire. Para visualizar la cromatoplaca, se revelará primero con una lámpara de luz UV (Figura 4) marcando el contorno de cada una de las manchas observadas con un lápiz fino y luego introduciendo la placa en una cámara de yodo.

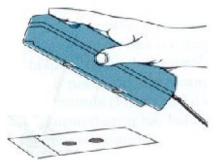
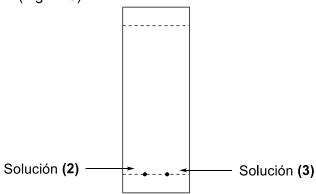
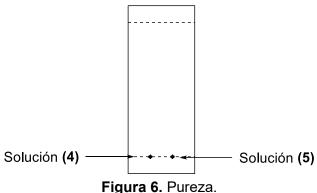


Figura 4. Revelado con luz UV.

III. POLARIDAD DE LAS SUSTANCIAS

Para comprobar la polaridad de las sustancias se colocan ahora las soluciones (2) y (3). Se preparan tres cromatoplacas y se colocan 3 aplicaciones de las soluciones en cada una de ellas (Figura 5).




Figura 5. Polaridad.

La primera cromatoplaca se eluye con hexano, la segunda con acetato de etilo (AcOEt) y la tercera con metanol (MeOH), No olvidar colocar 2 mL de cada eluyente en la cámara de elución respectivamente.

En cada caso, se deja evaporar el eluyente y se revela con luz UV, se observan y se anotan los resultados (se calculan los Rf de cada compuesto en los diferentes eluyentes). Se deben anotar las observaciones.

IV. PUREZA DE LAS SUSTANCIAS

Se desea saber de las sustancias (4) y (5) cuál es pura y cuál es impura. Se prepara una cromatoplaca y se aplica en ella ambas soluciones, como se observa en la Figura 6.

Se eluye con AcOEt y se deja secar. Se revela con luz UV y después con yodo. Se anotan los resultados y observaciones.

V. LA CROMATOGRAFÍA EN CAPA FINA COMO CRITERIO PARCIAL DE IDENTIFICACION.

Se desea identificar los componentes de algunos medicamentos utilizando la técnica de cromatografía en capa fina comparándolas con una muestra patrón. En este caso se puede utilizar una tableta de Sedalmerck®, Agrifen® ó Excedrin® (paracetamol y cafeína), pero pueden usarse otros medicamentos que contengan paracetamol o cafeina.

Las soluciones se preparan moliendo una tableta de cada medicamento. En un frasco vial se coloca la tableta molida y se adicionan 3 mL de acetato de etilo y se agita con cuidado para no derramar la muestra, se deja reposar por 5 minutos para que se sedimente el excipiente y se marcan como Muestra 1 y Muestra 2.

En una cromatoplaca se aplican las disoluciones usando una sustancia patrón de cafeína como se muestra en la Figura 7.

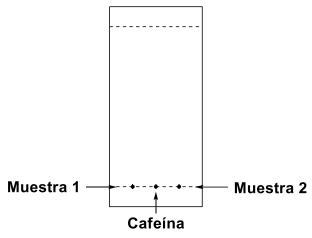


Figura 7. Identificación.

Se eluyen la cromatoplaca en acetato de etilo, se dejan secar, se revelan con luz UV y después con yodo anotando los resultados observados de cada una de las cromatoplacas realizadas.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., *Microscale Organic Laboratory: with Multistep and Multiscale Syntheses*, 5 ed., USA, Wiley, 2011.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Pasto D. J., Johnson C. R., Miller M. J., *Experiments and Techniques in Organic Chemistry*, Prentice Hall, 1992.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., *A Small Scale Approach to Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry: A Laboratory Course*, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., Purification of Laboratory Chemicals, 6 ed., British, USA, 2009.

Apéndice I: Conocimientos previos

- Concepto de cromatografía. Tipos de cromatografía de adsorción y cromatografía de partición. Ejemplos.
- Fenómeno de adsorción. La propiedad de retención. Concepto de Rf.

- La cromatografía en capa fina. Sus características y aplicaciones.
- Eluyentes, soportes y reveladores más comunes para la cromatografía en capa fina.
- Factores que influyen en una separación por cromatografía de capa fina.
- Estructura, propiedades físicas, propiedades químicas, riesgos a la salud y de inflamabilidad y acciones en caso de emergencia de los productos químicos a utilizar.

Apéndice II: Cuestionario

- 1. ¿Cómo se elige el eluyente para cromatografía en capa fina?
- 2. ¿Por qué se dice que la cromatografía en capa fina es un criterio parcial y no total de identificación?
- 3. ¿Cuál será el resultado de los siguientes errores en cromatografía en capa fina?
 - 1. Aplicación de solución muy concentrada.
 - 2. Utilizar eluyente de alta polaridad.
 - 3. Emplear gran cantidad de eluyente en la cámara de cromatografía.
- 4. El valor del Rf ¿depende del eluyente utilizado?
- 5. Qué significa que una sustancia tenga:
 - 1. Rf < 0.5
 - 2. Rf = 0.5
 - 3. Rf > 0.5

Apéndice III: Disposición de residuos

RESIDUOS			
D1. Capilares	D5. Hexano-acetato de etilo		
D2. Hexano	D6. Gel de sílice para ccf		
D3. Acetato de etilo	D7. Papel filtro y muestra problema		
D4. Metanol			

- **D1 y D7:** Empacar cuidadosamente para incineración.
- **D2 a D4:** Recuperar por destilación al final del semestre.
- **D5:** Hacer pruebas de compatibilidad para enviar a incineración.
- **D6:** Se puede recuperar para usarla nuevamente, previo lavado y secado.

PRÁCTICA No 7 CROMATOGRAFÍA EN COLUMNA

OBJETIVOS ACADÉMICOS

- Comprender la técnica de cromatografía en columna, sus características y los factores que en ella intervienen.
- Emplear la técnica de cromatografía en columna para la separación de una mezcla de compuestos orgánicos.
- Controlar a través de cromatografía en capa fina la cromatografía en columna.

PROBLEMA

El alumno obtendrá el principio activo de un medicamento mediante cromatografía en columna y seguirá la separación a través de cromatografía en capa fina.

REACTIVOS

Gel de sílice para columna

Acetato de etilo

Gel de sílice 60 HF₂₅₄ para ccf Hexano

Yodo 1 Tableta de algún medicamento con paracetamol

EQUIPO

- 1 Agitador de vidrio
- 1 Colector
- 1 Columna para cromatografía
- 1 Embudo de filtración rápida
- 2 Frascos para cromatografía
- 1 Frascos viales
- Matraz redondo de fondo plano de 125 mL
- 1 Pipeta de 5 mL
- 4 Portaobjetos
- 1 Probeta de 25 mL
- Lámpara de luz UV, onda larga y onda
- 1 barra de agitación magnética
- 1 Gradilla

- 1 Piseta de 125 mL con eluyente
- Refrigerante para agua con
- mangueras
- 1 T de destilación
- 1 Tapón esmerilado
- 1 Tubo capilar
- 2 Vasos de precipitados de 100 mL
- 1 Vidrio de reloj
- 1 Espátula Cr- Ni de 20 cm
- 3 Pinzas de tres dedos con nuez
- 1 Parrilla con agitación magnética
- 1 Cámara de yodo
 - 10 Tubos de ensayo de 12 X 75 mm
 - 2 Grapas de plástico para juntas esmeriladas

DESARROLLO EXPERIMENTAL

I. PURIFICACIÓN DEL PRINCIPIO ACTIVO DE UN MEDICAMENTO.

Se coloca la columna de cromatografía en un soporte con ayuda de unas pinzas de tres dedos, de tal forma que se encuentre totalmente vertical y con una altura al tamaño de los frascos viales.

Para empacar la columna, se coloca la llave de la columna en posición de cerrado (si la llave es de vidrio, se deberá engrasar ligeramente). Se introduce hasta el fondo un pequeño pedazo de algodón con ayuda de una varilla de vidrio o de metal, se agregan 5 mL del eluyente (AcOEt) y se presiona suavemente el algodón para eliminar las burbujas. Se prepara una suspensión de sílica gel para columna, 6 g en 30 mL de eluyente y se agita la suspensión hasta que no se observen burbujas de aire. Con ayuda de un embudo de vidrio se vierte la suspensión en la columna lo más rápido posible y se golpea ligeramente la columna con los dedos para que el empaquetamiento sea uniforme. Se abre la llave para eliminar el exceso de disolvente cuidando de no dejar secar la silica gel, se debe mantener el eluyente aproximadamente a 0.5 cm arriba de la sílica.

Una vez realizado lo anterior, se adiciona por la parte superior de la columna 60 mg de la muestra problema en cuestión, y con mucho cuidado adicionar un poco del eluyente (AcOEt), para bajar la cantidad de muestra que se haya pegado por las paredes en la columna cromatográfica y adicionar 10 mL de acetato de etilo.

Por otro lado, se marcan los frascos viales a 6 mL y se colectan las fracciones (eluatos), se verifica la separación realizando cromatoplacas (se preparan las cromatoplacas y capilares previamente como la práctica anterior). En cada cromatoplaca se aplican 4 de sus fracciones y un testigo como se indica en la Figura 1.

Se eluyen las cromatoplacas en una mezcla del **eluyente utilizado** y se observa en cuales fracciones hay presencia del compuesto separado revelando con una cámara de UV o una cámara de yodo. En cada cromatoplaca se debe observar el cambio de coloración de la mancha del producto principal (a menor concentración menor intensidad de color).

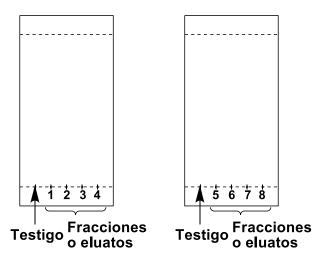


Figura 1. Seguimiento de la separación por cromatografía en capa fina.

Para recuperar el principio activo se destila el disolvente por medio de una destilación simple usando como fuente de calentamiento una parrilla, se deja un residuo de 5 mL aproximadamente y se vierte en un vidrio de reloj para que termine de evaporarse en la campana. Finalmente se pesa el producto recuperado se determina el punto de fusión y se calcula el rendimiento.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., Microscale Organic Laboratory: with Multistep and Multiscale Syntheses, 5 ed., USA, Wiley, 2011.
- Brewster R. Q., van der Wert C. A., McEwen W. E., *Curso Práctico de Química Orgánica*, 2 ed., Madrid, Alhambra, 1979.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Pasto D. J., Johnson C. R., Miller M. J., *Experiments and Techniques in Organic Chemistry*, Prentice Hall, 1992.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., *A Small Scale Approach to Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry: A Laboratory Course*, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., Purification of Laboratory Chemicals, 6 ed., British, USA, 2009.

Apéndice I: Conocimientos previos

- Cromatografía en columna. Para que sirve y sus aplicaciones.
- Cromatografía de adsorción, de partición o reparto.

- Factores que influyen en una separación por cromatografía en columna.
- Selección de eluyentes y adsorbentes para la separación de compuestos por cromatografía en columna.

Apéndice II: Cuestionario

- 1. Indique algunas de las aplicaciones de la cromatografía de adsorción.
- 2. Diga cuál es la diferencia entre una cromatografía en capa fina y la de columna.
- 3. ¿Qué debe hacerse para encontrar el eluyente adecuado para un compuesto que se purificara en cromatografía en columna?
- 4. ¿Por qué es necesario realizar una cromatografía en capa fina a los eluatos obtenidos de la columna cromatográfica?
- 5. Escriba una lista de eluyentes utilizados en cromatografía en columna en orden de polaridad creciente. Anote su bibliografía.

RESIDUOS	
D1. Capilares y cubreobjetos	D5. Gel de sílice para la columna
D2. Acetato de etilo	D6. Metanol/acetona
D3. Hexano-acetato de etilo	D7. Papel filtro y muestra problema
D4. Gel de sílice para placa	

- **D1** y **D7**: Empacar cuidadosamente para incineración.
- **D2**, **D3** y **D6**: Secar y destilar para recuperar.
- **D4:** Se puede recuperar para usarla nuevamente previo lavado y secado
- **D5:** Cernir, lavar y secar para usarla nuevamente, previo lavado y secado.

PRÁCTICA No 8 EXTRACCIÓN CON DISOLVENTES ORGÁNICOS Y ACTIVOS

OBJETIVOS ACADÉMICOS

- Emplear la técnica de extracción como método de separación y purificación de los componentes de una mezcla.
- Realizar la separación de una mezcla de compuestos a través de una extracción con disolventes activos.
- Diferenciar entre una extracción con disolventes orgánicos y una con disolventes activos.

PROBLEMAS

- El alumno establecerá las diferencias de la extracción simple y múltiple en la separación de yodo de una muestra acuosa.
- El alumno separará los componentes de una muestra aprovechando las propiedades ácido-base de sus componentes.

REACTIVOS

Acetona Cloruro de sodio
Cloruro de metileno Solución de hidróxido de sodio al 10% (m/V)
Acetato de etilo Solución de hidróxido de sodio al 40% (m/V)
Naftaleno Solución de ácido clorhídrico al 10% (V/V)
Benzocaína Ácido clorhídrico concentrado
Ácido benzoico Disolución acuosa yodo-yodurada
Sulfato de sodio anhidro

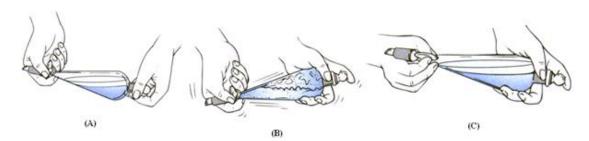
EQUIPO

- Colector
 Embudo de vidrio sinterizado con alargadera
 Embudo de separación Quickfit con tapón
- Embudo de filtración rápida
 Matraces Erlenmeyer de 50 mL
- 1 Matraces Erlenmeyer de 125 mL
- Matraz Kitasato de 125 mL con manguera
- 1 Matraz redondo de fondo plano de 50 mL
- 1 Pipeta de 10 mL

1 Agitador de vidrio

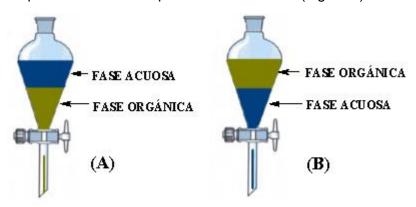
- 1 T de destilación
- 6 Tubos de ensayo de 12 x 75 mm
- 2 Vasos de precipitados de 100 mL
- 2 Vasos de precipitados de 250 mL
- 1 Vidrio de reloj
- 1 Espátula Cr- Ni de 20 cm
- 1 Gradilla
- 3 Pinzas de tres dedos con nuez
- 1 Pinza para tubo de ensayo
- Parrilla con agitación magnética

- 1 Barra de agitación magnética
- 2 Probetas de 25 mL
- 1 Refrigerante para agua con mangueras
- 1 Nave de pesado


- 1 Recipiente eléctrico para baño María
- 1 Recipiente de peltre
- 2 Grapas de plástico para juntas esmeriladas

DESARROLLO EXPERIMENTAL

El HCI concentrado y la disolución acuosa al 40 % de NaOH son corrosivos, manéjalos con cuidado.


I. EXTRACCIÓN CON DISOLVENTES ORGÁNICOS

Se utiliza un embudo de separación para realizar las diferentes técnicas de extracción. Para ello se debe sujetar el embudo de separación a un soporte con ayuda de una pinza de tres dedos. Cerciórese de que la llave este cerrada (si la llave es de vidrio se debe engrasar un poco) antes de agregar cualquier disolvente. Una vez que se colocan los disolventes se debe cerrar con el tapón el embudo y se agita moderadamente. Disminuya la presión interna del embudo abriendo con cuidado la llave después de cada agitación Figura 1.

Figura 1. (A) Toma del embudo de separación, **(B)** Agitación del embudo de separación y **(C)** Liberación de la presión del embudo de separación.

Se coloca el embudo de nueva cuenta en la pinza de tres dedos y se deja reposar hasta que se observe la separación de las fases (Figura 2).

Figura 2. Separación por densidad de las fases y decantación: **(A)** Disolventes halogenados, **(B)** Disolventes no halogenados.

Con base a la información de la Tabla 1, se selecciona el disolvente adecuado para realizar la extracción de yodo.

Tabla 1. Solubilidad de disolventes orgánicos en agua.

Disolvente	Densidad (g/mL)	Punto de ebullición (°C)	Solubilidad en g/100 mL de H₂O
Etanol	0.785	78.4	∞
Diclorometano	1.32	39	2 ^{20 (a)}
Acetona	0.792	56.5	∞

⁽a) El valor 2²⁰ significa que 2 g de cloruro de metileno son solubles en 100 mL de agua a una temperatura de 20°C.

i. EXTRACCIÓN SIMPLE

4.5 mL de una solución yodo-yodurada se colca en el embudo de separación con la llave cerrada y se adicionan 4.5 mL del disolvente orgánico seleccionado, se realiza la extracción y se colocan ambas fases en tubos de ensayo y se deja en la gradilla.

ii. EXTRACCIÓN MÚLTIPLE

Nuevamente se colocan 4.5 mL de la solución yodo-yodurada en el embudo de separación con la llave cerrada y se adiciona el disolvente orgánico seleccionado dividido en tres porciones de 1.5 mL, se realiza la extracción y se coloca cada una de las fases orgánicas en tres tubos de ensayo y déjelos en la gradilla.

Se anotan las observaciones indicando cuál de los dos procedimientos permite extraer mayor cantidad de yodo de acuerdo con el color observado tanto en las fases orgánicas como en las acuosas de ambos tipos de extracción.

II. EXTRACCIÓN SELECTIVA CON DISOLVENTES ACTIVOS

Primero se diseña un diagrama de separación para una mezcla que contiene un compuesto ácido, un básico y un neutro.

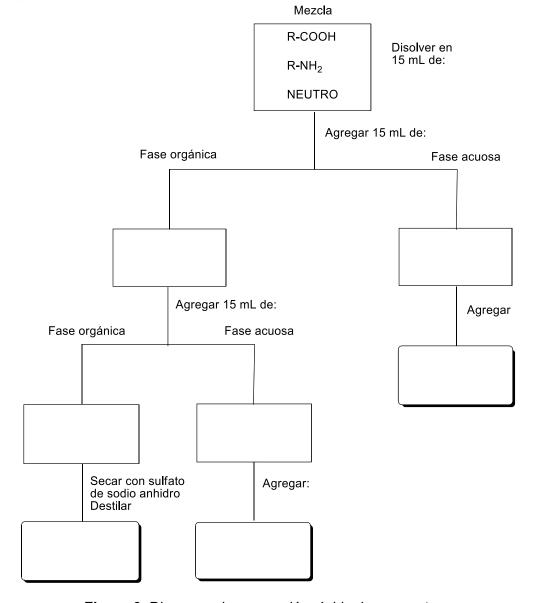


Figura 3. Diagrama de separación: ácido, base, neutro.

Se disuelven 0.6 g de una mezcla problema en 15 mL de acetato de etilo y se separan conforme al diagrama que se diseñó previamente. Después de realizar la separación de cada uno de los componentes de la mezcla, se llena la Tabla 2 con los datos experimentales.

NOTAS:

- a) Para las extracciones deben utilizarse las disoluciones al 10 % de NaOH y HCI, las concentradas se usarán para recuperar por precipitación la base y el ácido, si existen en la muestra problema.
- b) Al medir el pH de las disoluciones a neutralizar, colocar los trozos de papel pH en el vidrio de reloj, no deben contaminarse las mesas de la campana.

Tabla 2. Porcentaje de cada compuesto en la mezcla problema.

Compuesto	Masa (g)	Rendimiento %
Ácido		
Base		
Neutro		

REFERENCIAS BIBLIOGRAFICAS

- Mayo D., Dike R., Forbes D., Microscale Organic Laboratory: with Multistep and Multiscale Syntheses, 5 ed., USA, Wiley, 2011.
- Brewster R. Q., van der Wert C. A., McEwen W. E., *Curso Práctico de Química Orgánica*, 2 ed., Madrid, Alhambra, 1979.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Pasto D. J., Johnson C. R., Miller M. J., *Experiments and Techniques in Organic Chemistry*, Prentice Hall, 1992.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pavia D. L., Lampam G. M., Kriz G. S., Engel R., A Small Scale Approach to Organic Laboratory Techniques, 3 ed., Brooks and Cole, USA, 2011.
- Pedersen S. F., Myers A. M., *Understanding the Principles of Organic Chemistry: A Laboratory Course*, Brooks and Cole, USA, 2011.
- Armarego W. L. F., Chai C., Purification of Laboratory Chemicals, 6 ed., British, USA, 2009.

Apéndice I: Conocimientos previos

- 1. Concepto de coeficiente de distribución o de reparto.
- 2. Métodos de extracción: simple, múltiple y selectiva.
- 3. Características físicas y químicas de los disolventes orgánicos y activos.
- 4. Reacciones ácido-base ocurridas al extraer compuestos con disolventes activos.
- 5. ¿Qué es una emulsión? Diversas formas de romper una emulsión.
- 6. ¿Qué es un agente desecante? Ejemplos de agentes desecantes.
- 7. Diseño de diferentes diagramas de separación de mezclas: ácido/base/neutro, ácido/base, ácido/neutro y base/neutro.

8. Estructura, propiedades físicas, propiedades químicas, riesgos a la salud y de inflamabilidad y acciones en caso de emergencia de los productos químicos a utilizar.

Apéndice II: Cuestionario

- 1. Diga cuál de los siguientes sistemas de disolventes son factibles para la extracción. Explique también de acuerdo con su densidad, en qué parte del embudo quedarían ubicados cada uno de los disolventes.
 - 1. Etanol-agua
 - 2. Tolueno-agua
 - 3. Ácido sulfúrico-agua
 - 4. Diclorometano-agua
- 2. Con base en los resultados experimentales, ¿cuál es la mejor técnica de extracción: la simple o la múltiple? Fundamente su respuesta.
- 3. Diseñe un diagrama de separación para la mezcla de *p*-(trifluorometoxi)anilina, ácido 4-(4-metoxifenoxi)benzoico y 1-bromo-3,5-dimetoxibenceno.
- 4. ¿Cómo se puede eliminar una emulsión?
- 5. ¿Por qué se debe de liberar la presión al agitar el embudo de separación?
- 6. ¿En qué casos debe utilizarse la extracción selectiva?
- 7. ¿En qué casos debe utilizarse la extracción múltiple?
- 8. ¿Por qué el compuesto neutro debe obtenerse por destilación del disolvente en el que se encuentra y no por cristalización en dicho disolvente?

Apéndice III: Disposición de residuos

RESIDUOS			
D1. Cloruro de metileno	D6. Residuos básicos		
D2. Papel filtro, algodón	D7. Sulfato de sodio húmedo		
D3. Agua yodo-yodurada	D8. Metanol/acetona		
D4. Acetato de etilo	D9 . Cubre objetos rotos		
D5. Residuos ácidos			

- **D1 D 4 y D8:** Recuperar por destilación al final del semestre.
- **D2** y **D9**: Empacar para incineración.
- **D3:** Adsorber con carbón activado y desechar neutro.
- **D5 y D6:** Deben neutralizarse y desecharse al drenaje.
- **D7:** Secar y empacar para incineración. Si está limpio se puede usar nuevamente.

PRÁCTICA No 10 AISLAMIENTO

OBJETIVOS ACADÉMICOS

- Aislar el aceite esencial de un producto natural utilizando la destilación por arrastre con vapor, hidrodestilación, método directo o extracción continua.
 - Conocer las características de cada una de las técnicas.
- Comparar la eficiencia y selectividad de cada una de las técnicas en el aislamiento de un aceite esencial.

PROBLEMA

El alumno aislará un aceite esencial por alguno diferentes métodos de extracción sólido-líquido y establecerá el número de componentes principales de él mediante cromatografía en capa fina.

REACTIVOS

Zacate limón (té limón) u otros materiales adecuados (proporcionados por los alumnos)

Agua destilada Sulfato de sodio anhidro Acetato de etilo Gel de sílice para ccf

Hexano Yodo

EQUIPO

DESTILACIÓN POR ARRASTRE DE VAPOR

1 Agitador de vidrio 2 Matraces Erlenmeyer de 250 mL

1 Barra magnética 1 Parrilla con agitación

1 Colector 2 Portaobjetos

1 Embudo de separación Quickfit con tapón 1 Probeta de 10 mL

1 Embudo de vidrio 1 Refrigerante para agua con manguera

1 Equipo adecuado para arrastre con vapor

(armado: tubos, tapones, etc.)

2 Vasos de precipitados de 250 mL
 2 Tubos capilares
 1 Espátula Cr- Ni de 20 cm
 2 Trasco para cromatografía

4 Pinzas de tres dedos con nuez1 Recipiente de peltre1 T de destilación

2 Grapas de plástico para juntas esmeriladas

MÉTODO DIRECTO

1 Colector 1 Refrigerante (24/40) para agua con mangueras

1 Matraz bola de fondo plano de 1 Barra magnética de 1 pulgada

500 mL (24/40)

1 Matraz Erlenmeyer de 250 mL 1 Parrilla con agitación

1 T de destilación 2 Pinzas de tres dedos con nuez (grandes)

1 Termómetro 1 Portatermómetro

EXTRACCIÓN CONTINUA EN SOXHLET

1 Equipo Soxhlet con cámara de extracción y refrigerante para agua con mangueras

1 Parrilla con agitación

1 Matraz bola de fondo plano de 125 mL

2 Pinzas de tres dedos con nuez

1 Vaso de precipitados de 250 mL

1 Barra magnética

1 Refrigerante para agua con mangueras

2 Portaobjetos

1 T de destilación

1 Colector

1 Tapón Quickfit

1 Espátula Cr-Ni de 20 cm

1 Frasco vial

1 Recipiente de peltre

1 Probeta de 10 mL

1 Frasco para cromatografía

2 Grapas de plástico para juntas

esmeriladas

HIDRODESTILACIÓN

1 Matraz bola de 1 L (24/40)

1 Matraz Erlenmeyer de 50 mL

1 Refrigerante para agua 24/40 con mangueras

1 Trampa tipo Clevenger (24/40)

1 Vaso de precipitados de 100 mL

1 Vaso de precipitados de 250 mL

1 Barra magnética

1 Parrilla con agitación

3 Pinzas de tres dedos c/nuez

MATERIAL ADICIONAL

1 Rotaevaporador gabinete

1 Lámpara de luz UV con

DESARROLLO EXPERIMENTAL

I. DESTILACIÓN POR ARRASTRE CON VAPOR

Se monta el equipo como se muestra en la Figura 1. En el matraz 1 se colocan aproximadamente 175 mL de agua destilada (generador de vapor) y se agregan cuerpos de ebullición o una barra magnética. En el matraz 2 se coloca en trozos pequeños (1 cm) el material del que se va a extraer el aceite esencial (cuidando que la conexión de vidrio no se obstruya con los trozos del material que se trabajará; pues de ser así, no habrá paso de la corriente de vapor). Se calienta con la parrilla el matraz 1 hasta ebullición del agua, con el fin de generar el vapor que pasará al matraz 2. Este matraz 2 también se debe calentar suavemente con otra parrilla para evitar que el agua se condense aquí. El aceite esencial del material se extrae al ser arrastrado por el vapor de agua en un proceso de co-destilación (la temperatura de destilación debe ajustarse de manera que caiga una gota por segundo). Se suspende el calentamiento cuando el volumen del destilado sea de 120 o 150 mL aproximadamente.

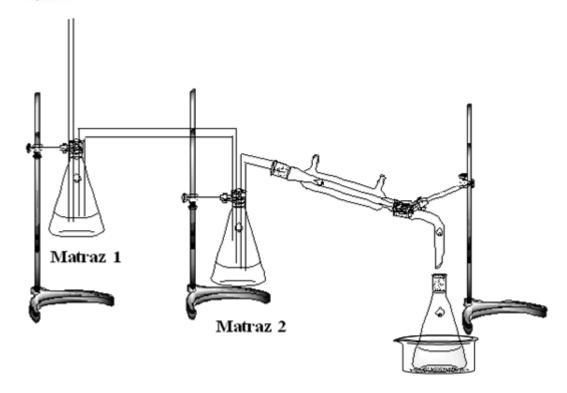


Figura 1. Equipo de destilación por arrastre con vapor.

De este destilado, se debe extraer totalmente el aceite esencial, colocándolo en el embudo de separación y separando la mayor parte de la fracción acuosa con 5 mL de acetato de etilo (si no es suficiente se pueden adicionar 5 mL más) para facilitar su separación. La fase acuosa se desecha y el extracto orgánico se colecta en un matraz Erlenmeyer o un vaso de precipitados, se adiciona la cantidad necesaria de sulfato de sodio anhidro para eliminar el agua remanente. Se filtra o se decanta el extracto seco y se coloca en un vial.

Finalmente, se realiza una cromatografía en capa fina.

i. CROMATOGRAFÍA EN CAPA FINA COMPARATIVA

Se pueden utilizar para comparar y observar el número de componentes de los extractos en cada uno de los experimentos, también se pueden comparar entre sí los aceites obtenidos por otros métodos y materias primas. Para hacer esta comparación, se aplican las diferentes muestras en la misma cromatoplaca y se eluye con diferentes mezclas de hexano-acetato de etilo. Al estar diluidos el aceite, se deben hacer varias aplicaciones, 3 o 4, dejando secar entre una y otra. La cromatoplaca se revela con luz UV y luego con yodo. Se anotan las observaciones, se dibuja e interpreta la cromatoplaca revelada.

II. MÉTODO DIRECTO

En un matraz bola de 500 mL se colocan 300 mL de agua destilada y el material a extraer (aproximadamente 50 g) cortado en trozos pequeños (1 cm), se coloca una barra magnética de tamaño apropiado. Se monta el equipo de destilación simple con las piezas necesarias (Figura 2), de boca 24/40 y se calienta con una parrilla con agitación hasta recibir unos 150 o 200 mL de destilado.

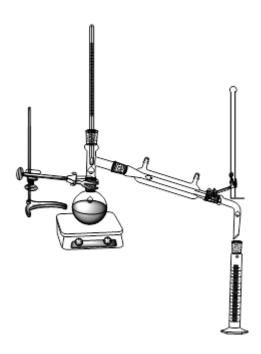


Figura 2. Equipo de destilación simple.

De este destilado se debe extraer totalmente el aceite esencial, colocándolo en el embudo de separación y separando la mayor parte de la fracción acuosa. Al aceite sobrenadante (unas cuantas gotas), se agregan 5 mL de acetato de etilo para facilitar su separación (si es necesario se pueden adicionar 5 mL más). La fase acuosa se desecha y el extracto orgánico se colecta en un matraz Erlenmeyer de 50 mL, se agrega sulfato de sodio anhidro para eliminar el agua remanente. Se filtra o decanta el extracto seco y se coloca en un vial. Finalmente, se realiza una cromatografía en capa fina para comprobar el grado de pureza del aceite obtenido.

III. HIDRODESTILACIÓN

Se monta el equipo que se muestra en la Figura 3. En el matraz bola se coloca, hasta un tercio de su volumen, el material del que se va a extraer el aceite esencial, cortado en trozos pequeños (molido o triturado si se trata de semillas). Se adiciona

agua destilada hasta la mitad del matraz y se colocan cuerpos de ebullición. Se coloca el matraz en la parrilla de calentamiento y se sostiene con unas pinzas. Se coloca la trampa tipo Clevenger, engrasando ligeramente las juntas esmeriladas, y se sostiene con otras pinzas la boca que lleva el refrigerante. Se colocan las mangueras al refrigerante y se engrasa ligeramente antes de colocarlo sobre la trampa de Clevenger. Se comienza a calentar cuidadosamente hasta ebullición. El reflujo deberá ser el adecuado (el disolvente debe condensar en la parte baja del refrigerante. El tiempo de reflujo empieza a partir de que cae la primera gota de disolvente condensado). El aceite se va separando en la bureta de la trampa.

Se suspende el reflujo cuando se considere que ha sido suficiente. Se deja enfriar un poco el aparato y se colecta el aceite en un matraz Erlenmeyer de 50 mL, se seca con sulfato de sodio anhidro y se vierte a un vial. Finalmente se realiza una cromatografía en capa fina para comprobar el grado de pureza del aceite obtenido.

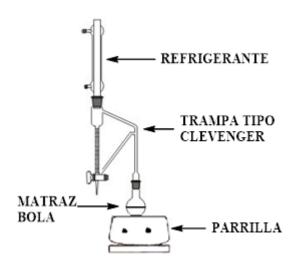


Figura 3. Equipo de "hidrodestilación" con trampa Clevenger.

IV. EXTRACCIÓN CONTINUA EN SOXHLET

Se monta el equipo de extracción con Soxhlet mostrado en la Figura 4. En un matraz bola de 500 mL se colocan 300 mL de acetato de etilo y una barra magnética (si se usa parrilla). Se llena el "dedal" (se hace con un trozo de papel filtro, dándole la forma de un cilindro que quepa en la cámara de extracción) con el material que va a emplear, molido o cortado en pequeños trozos y se coloca en la cámara de extracción. Se calienta cuidadosamente hasta ebullición del acetato de etilo, cuyos vapores deberán condensarse en el refrigerante para caer sobre el material de extracción. En el momento en que la cámara de extracción se llena con el disolvente y llega a la parte superior del sifón, el disolvente drena hacia el matraz.

Este proceso se repite continuamente de tal manera que cada vez se extrae mayor cantidad del aceite esencial. Al finalizar, se desmonta el equipo y se decanta, por medio

de una destilación retire el disolvente o en el rotaevaporador (Figura 5), dejando aproximadamente 5 mL de cola de destilación, que es el extracto más concentrado. Se coloca en un vial y se realiza una cromatografía en capa fina para comprobar el grado de pureza del extracto obtenido.

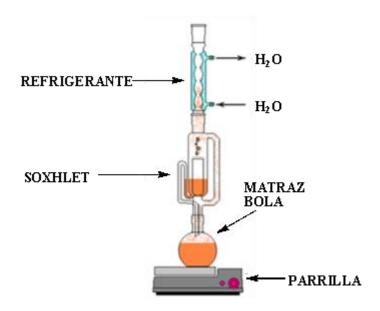


Figura 4. Extracción continúa en Soxhlet.

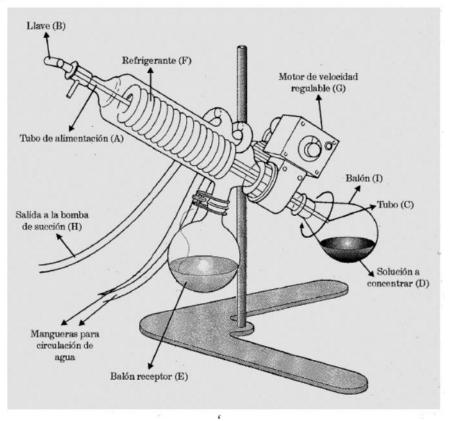


Figura 5. Rotaevaporador.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., Microscale Organic Laboratory: with Multistep and Multiscale Syntheses, 5 ed., USA, Wiley, 2011.
- Brewster R. Q., van der Wert C. A., McEwen W. E., Curso Práctico de Química Orgánica, 2 ed., Madrid, Alhambra, 1979.
- Williamson K., Masters K., Macroscale and Microscale Organic Experiments, 6 ed., USA, Brooks and Cole, 2010.
- Gilbert J. C., Martin S. F., Experimental Organic Chemistry A Miniscale and Microscale, 5 ed., Brooks and Cole, USA, 2010.
- Pavia D. L., Lampam G. M., Kriz G. S. Engel R., A Small Scale Approach to Organic Laboratory Techniques, 3 ed., Brooks and Cole, USA, 2011.
- Cerpa M. G., Hidrodestilación de Aceites Esenciales: Modelado y Caracterización, Tesis Doctoral, Universidad Valladolid, 2007.
- Domínguez X. A., Domínguez S. X. A., Química Orgánica Experimental, Limusa-Noriega, México, 1990.

Apéndice I: Conocimientos previos

- Ley de las presiones parciales de Dalton.
- Propiedades y características de los aceites esenciales, así como su aislamiento.
- Características, aplicaciones y ventajas de la destilación por arrastre con vapor.
- Características, aplicaciones y ventajas de hidrodestilación, método directo y método de Soxhlet.
- Extracción sólido-líquido. Extracción continúa sus características, ventajas y aplicaciones.

Apéndice II: Cuestionario

- 1. Explique, ¿en qué consiste una extracción sólido-líquido?
- 2. ¿En qué casos conviene emplear un método de extracción continua?
- 3. ¿A qué se le llama destilación por arrastre con vapor?
- 4. ¿Qué son los aceites esenciales? Dé tres ejemplos con sus respectivas estructuras.
- 5. Describa el proceso de extracción continua en Soxhlet y sus características.
- 6. ¿En qué consiste el llamado "método directo" y en qué casos se emplea?
- 7. ¿En qué consiste la hidrodestilación?
- 8. ¿Qué es lo que dice la Ley de Dalton?

Apéndice III: Disposición de residuos RESIDUOS

D1. Capilares
D5. Hexano-acetato de etilo
D2. Acetato de etilo
D6. Sulfato de sodio húmedo

D3. Agua D7. Material orgánico (plantas, hojas, semillas, etc.)

D4. Papel filtro, algodón D8. Gel de sílice para placa

- D1 y D4: Empacar cuidadosamente para incineración.
- D2 y D5: Recuperar por destilación al final del semestre.
- D3: Desechar directamente en el drenaje.
- D6: Secar y empacar para incineración.
- D7: Tirar en los desechos orgánicos.
- D8: Recuperar para su re-uso, previo lavado y secado

PRÁCTICA No 11 ISOMERÍA GEOMÉTRICA

OBJETIVOS ACADÉMICOS

- Realizar una reacción de isomerización utilizando calentamiento mediante reflujo.
- Llevar a cabo la transformación del anhídrido maleico al ácido fumárico mediante catálisis ácida.
- Comprobar la formación del producto mediante valores de punto de fusión y cromatografía en capa fina.

PROBLEMA

El alumno obtendrá al ácido fumárico y lo identificará mediante algunas de las técnicas aprendidas con anterioridad.

REACTIVOS

Anhídrido maleico Agua destilada

Ácido maleico Ácido clorhídrico concentrado

Acetona Acetato de etilo

Hexano

EQUIPO

1	Agitador de vidrio	1	Refrigerante para agua con mangueras
1	Embudo de vidrio sinterizado con alargadera	1	Vaso de precipitados de 150 mL
1	Embudo de filtración rápida	1	Vidrio de reloj
1	Matraz Erlenmeyer de 125 mL	1	Barra de agitación magnética
1	Matraz redondo de fondo plano de 25 mL	1	Espátula de Cr- Ni de 20 cm
1	Matraz Kitasato de 125 mL con manguera	1	Parrilla con agitación magnética
1	Probeta de 25 mL	1	Pinzas de tres dedos con nuez
1	Aparato Fisher-Johns	1	Recipiente de peltre
2	Portaobjetos	1	Frasco para cromatografía

DESARROLLO EXPERIMENTAL

El HCl concentrado es corrosivo, manéjalo con cuidado.

Durante el calentamiento de una disolución concentrada de este ácido se desprende cloruro de hidrógeno, el cual es corrosivo, por lo que debes dejar enfriar el sistema antes de quitar el refrigerante.

REACCIÓN

Anhídrido maleico

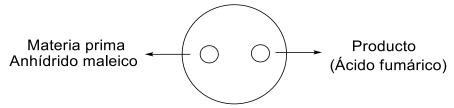
Ácido maleico

Ácido fumárico

Esquema 1. Reacción de isomerización.

I. OBTENCIÓN DEL ÁCIDO FUMÁRICO

Nota 1: Se deben engrasar con una pequeñísima cantidad de vaselina todas las juntas del equipo para llevar a cabo la reacción a reflujo.


Nota 2: Medir el HCl con la probeta.

En un matraz bola de fondo plano de 25 mL se coloca 0.5 g de anhídrido maleico y se adiciona 1 mL de agua caliente, se coloca la barra de agitación magnética, se agregan poco a poco y con mucho cuidado 1 mL de ácido clorhídrico concentrado. Se coloca el refrigerante en posición de reflujo y se calienta a ebullición durante 20 minutos (tomar en cuenta que el reflujo comienza al momento ver gotas que caen del refrigerante o ver escurrimiento en las parades del disolvente). Los cristales de ácido fumárico se van formando en el seno de la reacción, por esta razón se debe de controlar el calentamiento para evitar proyecciones bruscas.

Terminado el tiempo de reflujo, se quita el calentamiento y se deja enfriar el matraz de reacción (temperatura ambiente). El producto se filtra al vacío con ayuda de no más de 3 mL de agua fría y se seca. Una vez que esté seco el compuesto obtenido se pesa y se calcula el rendimiento de la reacción.

Se determina el punto de fusión del producto junto con la materia prima de partida con ayuda de un aparato de Fisher-Johns (calentar hasta 200 °C, no más pues el termómetro puede romperse) y observe si funde o no el producto (Figura 2).

Figura 1. Punto de fusión de la materia prima y el producto obtenido.

NOTA: El anhidrido maleico puede hidrolizarse con la humedad ambiental, por lo que se recomienda comprobar su naturaleza mediante la determinación de su punto de fusión.

Se realiza una cromatografía en capa fina, usando acetona, hexano y una mezcla hexano/acetato de etilo: 1:1 como eluyentes, se recomienda realizar estas cromatoplacas entre los miembros del grupo y comparar resultados. Usar acetona como disolvente.

Finalmente, se calcula el rendimiento de la reacción.

REFERENCIAS BIBLIOGRÁFICAS

- Mayo D., Dike R., Forbes D., *Microscale Organic Laboratory: with Multistep and Multiscale Syntheses*, 5 ed., USA, Wiley, 2011.
- Williamson K., Masters K., *Macroscale and Microscale Organic Experiments*, 6 ed., USA, Brooks and Cole, 2010.
- Fessenden R. J., Fessenden J. S., *Organic Laboratory Techniques*, 3 ed., Brooks and Cole, USA, 2001.
- Gilbert J. C., Martin S. F., *Experimental Organic Chemistry A Miniscale and Microscale*, 5 ed., Brooks and Cole, USA, 2010.
- Vogel A. I., Practical Organic Chemistry, 5 ed., Longman Scientific & Technical, London, 1989.
- Pedersen S. F., Myers A. M., Understanding the Principles of Organic Chemistry: A Laboratory Course, Brooks and Cole, USA, 2011.
- McMurry J., *Química Orgánica*, 7 ed., Cengage-Learning, México, 2008. Bruice P. Y., *Química Orgánica*, 5 ed., Pearson Educación, México, 2008.

Apéndice I: Conocimientos previos

- Fundamentos de estereoquímica.
- Concepto de isomería geométrica cis/trans y E/Z.
- Mecanismo de reacción de isomerización.
- Propiedades físicas y químicas de reactivos, intermediario y producto.
- Procedimiento para efectuar una cristalización por simple.
- Determinación del rendimiento de la reacción: reactivos involucrados, reactivo limitante y en exceso, cantidad teórica de producto obtenido.

 Estructura, propiedades físicas, propiedades químicas, riesgos a la salud y de inflamabilidad y acciones en caso de emergencia de los productos químicos a utilizar.

Apéndice II: CUESTIONARIO

- 1) ¿Con qué otra técnica podría saber si obtuvo el producto de la reacción?
- 2) En una isomería cis/trans, ¿cuál de los isómeros es más estable y por qué razón?
- 3) En la isomería E/Z, ¿cuál de los isómeros es más estable y porque razón?
- 4) Dibuje el mecanismo de reacción de las siguientes reacciones:

- 5) Con base a los resultados de punto de fusión de la materia prima y del producto, ¿cómo puede saber que obtuvo el producto deseado?
- 6) ¿Qué información se podría obtener mediante las cromatoplacas realizadas?

Apéndice III: Disposición de residuos

RESIDUOS		
D1. Papel filtro, algodón	D2. Residuos ácidos	
D3. Cubre objetos rotos	D4. Metanol/acetona	

- D1 y D3: Empacar y enviar a incineración.
- **D2:** Neutralizar a pH = 7 para desechar.
- **D4**: Recuperar por destilación al final del semestre

PRÁCTICA No 12 PROYECTO

OBJETIVOS ACADÉMICOS

- Identificar el método de purificación de un compuesto orgánico determinado.
- Aplicar las técnicas de aislamiento y purificación de compuestos orgánicos a una muestra de un producto comercial, farmacéutico o natural.

PROBLEMA

El alumno propondrá un proyecto a realizar aplicando una o varias de las técnicas estudiadas durante el semestre.

REACTIVOS

Estos dependerán del proyecto aprobado por el profesor, el cual deberá verificar que existan en el almacén del laboratorio.

Tener en cuenta que se tienen que adecuar las cantidades de reactivos del proyecto al material disponibles en el laboratorio.

EQUIPO

- 1 Agitador de vidrio
- 1 Colector
- 1 Embudo de vidrio sinterizado con alargadera
- Embudo de separación Quickfit con tapón
- 1 Embudo de vidrio
- 1 Frasco para cromatografía con tapa
- 1 Matraces Erlenmeyer de 50 mL
- 2 Matraces Erlenmeyer de 125 mL
- Matraz Kitasato de 1250 mL con manguera
- 1 Matraz redondo de fondo plano de 50 mL
- 1 Pipeta de 10mL
- 1 Probeta de 25mL
- 2 Portaobjetos

- Refrigerante para agua con mangueras
- 1 T de destilación
 - Termómetro -10 a 260 °C de alcohol
- 6 Tubos de ensayo de 16x150 mm
- 1 Vasos de precipitados de 150 mL
- 1 Vasos de precipitados de 250 mL
- 1 Vidrio de reloj
- Barra de agitación magnética
- 1 Espátula Cr- Ni de 20 cm
- 1 Gradilla
- Recipiente de peltre
- Parrilla con agitación magnética y calentamiento
- 1 Pinza para tubo de ensayo
- 3 Pinzas de tres dedos con nuez

2 Grapas de plástico para juntas esmeriladas.

DESARROLLO EXPERIMENTAL

Se propondrá por el estudiante considerando las técnicas estudiadas en esta asignatura, así como a los reactivos y cantidades con los que se cuenta en el laboratorio. Debe ser aprobado por el profesor.

El alumno contará con el equipo básico necesario. Si requiere otro material diferente o especial, podrá solicitarlo en la ventanilla con anticipación, previa autorización firmada de su profesor.

Podrán solicitar los aparatos usuales con los que contamos: aparatos de punto de fusión y lámparas de UV, para lo cual necesitará entregar una identificación oficial.

REFERENCIAS BIBLIOGRÁFICAS

Las consultadas por el estudiante para la propuesta de su proyecto.

Las que se encuentran en cada técnica de este compendio que involucre el proyecto.

Apéndice I: Conocimientos previos

Los propondrá el estudiante en su proyecto.

Apéndice II: Cuestionario

Lo propondrá el estudiante en su proyecto

Apéndice III: Disposición de residuos

Los residuos, en general, que pueden ser generados en esta práctica son:

RESIDUOS		
D1. Capilares	D9. Hexano-acetato de etilo	
D2. Hexano	D10. Gel sílice para ccf	
D3. Acetato de etilo	D11. Gel sílice para columna	
D4. Acetona	D12. Cloruro de metileno	
D5. Etanol	D13. Residuos ácidos	

D6. Metanol	D14. Residuos básicos
D7. Agua	D15. Sulfato de sodio húmedo
D8. Papel filtro, algodón, muestra	
problema, etc.	

- D1, D8 y D15: Enviarse a incineración.
- D2 a D6 y D9, D12: Recuperarlos por destilación
- D10 y D11: Se puede recuperar para usarlo nuevamente, previo lavado y secado.
- D7, D13 y D14: Neutralizarse y desecharse al drenaje.

ANEXOS

a) Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química:

https://quimica.unam.mx/proteccion-civil-facultad-quimica/reglamento-higiene-sequridad-laboratorios-la-facultad-quimica/

b) Reglamento para los Estudiantes y Profesores de los Cursos Experimentales del Departamento de Química Orgánica