Estructura de la Materia Serie 2

Dra. Martha M. Flores Leonar

Semestre 2018-2

1. Para un sistema de N núcleos y n electrones la forma del Hamiltoniano \hat{H} es la siguiente (Hamiltoniano molecular):

$$\hat{H} = -\underbrace{\sum_{I=1}^{N} \frac{\hbar^2}{2M_I} \nabla_I^2}_{\text{A}} - \underbrace{\sum_{i=1}^{n} \frac{\hbar^2}{2m_i} \nabla_i^2}_{\text{B}} + \underbrace{\sum_{I=1}^{N} \sum_{J>I}^{N} \frac{kZ^2 e^2}{|R_I - R_J|}}_{\text{C}} - \underbrace{\sum_{I}^{N} \sum_{i}^{n} \frac{kZ e^2}{|R_I - r_i|}}_{\text{D}} + \underbrace{\sum_{i=1}^{n} \sum_{j>i}^{n} \frac{ke^2}{|r_i - r_j|}}_{\text{E}}$$

- a) Identifica la interacción que le corresponde a cada uno de los términos en el Hamiltoniano \hat{H} .
- b) Escribe el Hamiltoniano molecular \hat{H} para el átomo de Litio (₃Li).
- c) Escribe el Hamiltoniano \hat{H} para el átomo de Boro ($_5$ B) considerando la aproximación de Born-Oppenheimer (Hamiltoniano electrónico).
- d) Escribe el Hamiltoniano \hat{H} para el átomo de Fluor ($_{9}$ F) considerando la aproximación de Born-Oppenheimer y electrones independientes.
- 2. En la molécula de 1,3 butadieno $H_2C=CH-CH=CH_2$ se puede suponer que los cuatro electrones tipo π de los dobles enlaces se mueven en la molécula como en una caja de potencial de longitud 4.2 \mathring{A} (longitud estimada suponiendo que la molécula es lineal).
 - a) Encuentra la longitud de onda λ en nm de la radiación que se emite cuando un electrón desciende del nivel n=3 al n=2 (el valor experimental es $\lambda=210$ nm).
 - b) ¿En qué región del espectro electromagnético se encuentra dicha transición?
- 3. Al resolver la ecuación de Schrödinger para el átomo de hidrógeno (y iones hidrogenoides), las soluciones de la función de onda que dependen de los números cuánticos n, l y m se escriben de la forma

$$\Psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r)\Theta_{l,m}(\theta)\Phi_m(\phi). \tag{1}$$

- a) Escribe todas las funciones de onda que pueden construirse para un valor de n=4 (expresadas en forma de la Ecuación 1).
- b) ¿Cuántos orbitales y de qué tipo (s, p, d, f, ...) se obtienen para este valor de n?
- c) ¿Cuántos orbitales degenerados se encuentran en este nivel de energía (n = 4)?
- d) Si ahora tratamos con el sistema ${}_{4}\mathrm{Be}^{3+}$ cuántos orbitales degenerados se encuentran para el tercer nivel de energía (n=3)?
- e) ¿Cuál es el valor de los números cuánticos n, l y m para las siguientes funciones y a que tipo de orbital (s, p, d, f, ...) corresponden?

$$\Psi_{3,2,0}(r,\theta,\phi) = R_{3,2}(r)\Theta_{2,0}(\theta)\Phi_0(\phi)$$

$$\Psi_{4,1,0}(r,\theta,\phi) = R_{4,1}(r)\Theta_{1,0}(\theta)\Phi_0(\phi)$$

$$\Psi_{2,0,0}(r,\theta,\phi) = R_{2,0}(r)\Theta_{0,0}(\theta)\Phi_0(\phi)$$

4. Para el átomo de hidrógeno, calcula el valor esperado de la distancia al núcleo $\langle r \rangle$ para la función 1s. El operador de distancia es un operador multiplicativo $\hat{r} = r$. Nota: para resolver el problema puedes hacer uso de la siguiente integral.

$$\int_0^\infty r^n e^{-br} dr = \frac{n!}{b^{n+1}}$$

5. De acuerdo a la gráfica de la figura 1, correspondiente a funciones de la parte radial para el átomo de hidrógeno, selecciona la opción correcta.

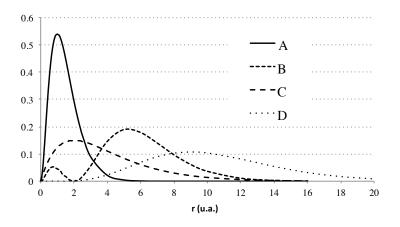


Figura 1:

- a) A,B,C y D corresponden a funciones radiales R(r) de los orbitales 1s, 2s, 2p y 3d respectivamente
- b) A,B,C y D corresponden a funciones de distribución radial $r^2R(r)^2$ de los orbitales 1s, 2s, 3s y 2p respectivamente

- c) A,B,C y D corresponden a funciones de distribución radial $r^2R(r)^2$ de los orbitales 1s, 3p, 2p y 4d respectivamente
- d) A,B,C y D corresponden a funciones de distribución radial $r^2R(r)^2$ de los orbitales 1s, 2s, 2p y 3d respectivamente
- e) A,B,C y D corresponden al cuadrado de las funciones radiales $R(r)^2$ de los orbitales 1s, 2s, 2p y 3d respectivamente
- 6. De acuerdo a las gráficas de la figura 2, correspondientes a funciones de la parte radial para el átomo de hidrógeno, identifica las funciones y contesta falso o verdadero a las proposiciones.

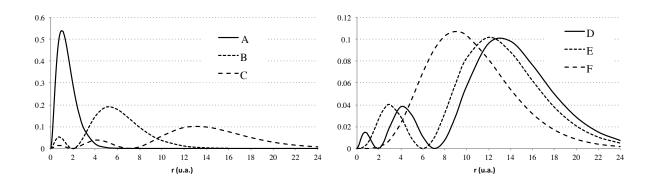
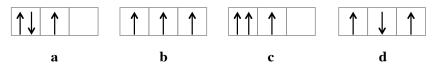



Figura 2:

A	D	
В	${f E}$	
C	\mathbf{F}	

- a) La función 1s decae más rápido que la 2s y 3s _____
- b) A mayores valores de n el orbital se vuelve más difuso _____
- c) El orbital 3s es más localizado que el 3p y 3d _____
- d) El orbital 3s es más penetrante que el 3p y 3d _____
- e) Para el orbital 3d existe probabilidad de encontrar al electrón en radios menores a 1 u.a. _____
- f) El orbital 3p es más localizado que uno 3s pero menos que uno 3d
- 7. Indica el número de nodos radiales, angulares y totales de las siguientes funciones.
 - a) 1s
 - b) 3s
 - c) 4p
 - d) 5d

8.	Considera los siguientes ordenamientos de electrones posibles para una configuración $n{\bf p}^3$ y contesta lo que se te pide.
	a) ¿Qué configuración representa al estado basal?
	b) Qué configuración es un estado no permitido?
	c) En qué configuración se maximiza la energía de intercambio (K) ?

d) En qué configuración se maximiza la energía de interacción coulómbica (J)?

9. Empleando el teorema de Koopmans determina lo que se pide a continuación.

- a) Determina todas las energías de ionización para el átomo de Boro ($_5$ B) en Ha y kJ/mol (1 Ha = 2625.5 kJ/mol).
- b) Estima la energía necesaria para quitar tres electrones al átomo neutro, $B^0 \to B^{+3} + 3e^-$.
- c) Estima la energía total E_T del átomo de Boro.
- 10. Determina la primera energía de ionización y la afinidad electrónica para el átomo de Fluor (₉F) en Ha y kJ/mol, mediante el cálculo de las energías totales de los átomos neutros y ionizados.
- 11. Escribe las configuraciones electrónicas completas de P, S, Cl, Ar, K, Ca, Fe, Cs y responde lo que se pide a continuación.

 $^{15}P_{^{16}S}_{^{16}S}_{^{17}Cl_{^{18}Ar_{^{19}K}_{^{20}Ca_{^{26}Fe}_{^{55}Cs}_{^{5}}}}$

- a) El átomo que presenta una mayor carga nuclear efectiva (Z*) _____
- b) El átomo que presenta mayor tamaño _____
- c) Los átomos que tienen caracter diamagnético _____
- d) El átomo con la mayor primer energía de ionización (E.I.₁) ______
- e) El átomo con la mayor segunda energía de ionización (E.I.₂) _____
- f) El átomo que presenta una mayor afinidad electrónica (A.E.) _____

- /	¿Para qué átomo se esperaría que la tendencia de aumento en la energía de ionización (E.I.) no se cumpla?
Para	los siguientes conjuntos de iones y átomos responde lo que se te pide.
a)	Ordena de mayor a menor radio iónico: Na $^+$, F $^-$, Mg $^{2+}$, S $^{2-}$
b)	El átomo con que presenta mayor tamaño: Ca, Ar, K, Br
,	De las siguientes configuraciones que corresponden a átomos neutros, qué elemento presenta la mayor energía de ionización: $A=1s^22s^22p^3;\ B=1s^22s^22p^5;\ C=1s^22s^22p^23s^1;\ D=1s^22s^22p^63s^2$
d)	Ordena de menor a mayor afinidad electrónica los siguientes átmos: Li, K, C, N

12.

5