Equipo:	Nombre:	
	Nombre:	
	Nombre:	
	Diántico O Fortalentes consulti	

Práctica 3: Equivalentes y normalidad

La práctica se resolverá de forma teórica, es decir, se completarán las tablas de acuerdo con los volúmenes teóricos esperados, y se realizará el análisis y conclusión a través de la relación entre estos y las siguientes preguntas:

Preguntas a responder al final de la sesión

- ¿Cuál es la relación de volúmenes entre el ácido y la base cuando se neutraliza una disolución de base con una disolución de ácido de la misma molaridad?
- ¿Cuál es la relación de volúmenes entre el ácido y la base cuando se neutraliza una disolución de base con una disolución de ácido de la misma normalidad?
- ¿Cuál es la relación de volúmenes entre el oxidante y el reductor cuando las disoluciones que reaccionan son de la misma molaridad?
- ¿Cuál es la relación de volúmenes entre el oxidante y el reductor cuando las disoluciones que reaccionan son de la misma normalidad?

Tarea previa.

1 En una disolución de H₂SO₄ 1M, ¿Cuál es la concentración molar de los átomos de hidrógeno?	
Cálculos:	

Respuesta:

2.- ¿Cuál es la normalidad de una disolución 1M de H₂SO₄? Cálculos:

Respuesta:

3.- En una disolución de H₃Cit 1M, ¿Cuál es la concentración molar de los átomos de hidrógeno ácidos? Cálculos:

Grupo 31

	Respuesta:
8 Considerando un litro de una disolución de Fe ²⁺ 1M que va a reac electrones cede el Fe ²⁺ ? Cálculos:	Respuesta: ccionar para dar Fe ³⁺ . ¿Cuántos moles de
7 ¿Cuál es la normalidad de esta disolución 1M de KMnO₄? Cálculos:	Respuesta:
6 Considerando un litro de una disolución de KMnO ₄ 1M que va a rede electrones va a aceptar el Mn(VII)? Cálculos:	Respuesta: eaccionar para dar Mn²+. ¿Cuántos moles
5 ¿Cuál es la normalidad de una disolución 1M de NaOH? Cálculos:	Respuesta:
4 ¿Cuál es la normalidad de una disolución 1M de H₃Cit? Cálculos:	Respuesta:

Cuál esع9	la	normal	lidad	de	esta	disolu	ción	de	Fe ²⁺	?
Cálculos:										

Respuesta:

10.- Considerando un litro de una disolución de oxalato de sodio, Na₂C₂O₄, 1M que va a reaccionar para dar CO₂, ¿Cuántos moles de electrones va a ceder cada ion oxalato? **Cálculos:**

Respuesta:

11.- ¿Cuál es la normalidad de esta disolución de $Na_2C_2O_4$?

Cálculos:

Respuesta:

Parte 1. Reacciones ácido-base

Completa y balancea las reacciones de neutralización:

HCl + NaOH →

H₂SO₄ + NaOH →

H₃Cit + NaOH →

Completa las siguientes tablas: expresa las concentraciones en unidades de normalidad y calcula los volúmenes teóricos necesarios para llevar a cabo las siguientes titulaciones.

Tabla1.

	HCI			NaOH		Relación v(ácido):v(base) Volumen de la alícuota : volumen de titulante gastado
0.1 M	N	v = 5 mL	0.1 M	N	v = mL	
0.2 M	N	v = 5 mL	0.1 M	N	v = mL	

<u>Cálculos</u>

Tabla 2

	H ₂ SO ₄			NaOH	Relación v(ácido):v(base) Volumen de la alícuota : volumen de titulante gastado	
0.1 M	N	v = 5 mL	0.1 M	N	v = mL	
0.05 M	N	v = 5 mL	0.1 M	N	v = mL	

<u>Cálculos</u>

Tabla 3

	H₃Cit			NaOH		Relación v(ácido):v(base) Volumen de la alícuota: volumen de titulante gastado
0.1 M	N	v = 5 mL	0.1 M	N	v = mL	
0.033 M	N	v = 5 mL	0.1 M	N	v = mL	

<u>Cálculos</u>

Conclusión Primera parte: ácido-base

¿Cómo es la relación de volúmenes cuando la disolución de ácido y la disolución de base tienen la misma molaridad? ¿De qué depende la relación de volúmenes?

¿Cómo es la relación de volúmenes cuando la disolución de ácido y la disolución de base tienen la misma normalidad? ¿De qué depende la relación de volúmenes?

Parte 2. Reacciones de óxido-reducción

Completa y balancea por el método del ión-electrón las siguientes reacciones **iónicas** rédox llevadas a cabo en medio ácido:

 $Fe^{2+} + MnO_4^- \rightarrow$

 $H_2O_2 + MnO_4$ \rightarrow

Completa las siguientes tablas: expresa las concentraciones en unidades de normalidad y calcula los volúmenes teóricos necesarios para llevar a cabo las siguientes titulaciones.

Tabla 1

	FeSO ₄			KMnO ₄		Relación v(reductor):v(oxidante) Volumen de la alícuota : volumen de titulante gastado
0.1 M	N	v = 5 mL	0.1 M	N	v= mL	
0.1 M	N	v = 5 mL	0.02 M	N	v= mL	

<u>Cálculos</u>

Tabla 2

	H ₂ O ₂			KMnO ₄	Relación v(reductor):v(oxidante) Volumen de la alícuota : volumen de titulante gastado	
0.1 M	N	v = 5 mL	0.1 M	N	v= mL	
0.05 M	N	v = 5 mL	0.02 M	N	v= mL	

<u>Cálculos</u>

Conclusión Segunda Parte: Reacciones de oxidación-reducción									
¿Cómo es la relación de volúmenes cuando la disolución del oxidante y la disolución del reductor tienen la									
misma molaridad? ¿De qué depende la relación de volúmenes?									
¿Cómo es la relación de volúmenes cuando la disolución del oxidante y la disolución del reductor tienen la misma normalidad? ¿De qué depende la relación de volúmenes?									