

Laboratorio de Termodinámica Clave 1212

Departamento de Fisicoquímica

Facultad de Química, UNAM Protocolo de la práctica

DETERMINACIÓN DE LA MASA MOLAR DE UN LÍQUIDO VOLÁTIL POR EL MÉTODO DE LAS PRESIONES PARCIALES

Objetivo

Determinar la masa molar de una sustancia volátil empleando el método de presiones parciales.

Cuestionario previo

- 1. ¿Qué es la masa molar y cuáles son sus unidades más usadas?
- 2. ¿Para determinar la masa molar de la sustancia problema se debe suponer que en estado gaseoso se comporta como gas ideal? Justificar la respuesta.
- 3. Investigar las técnicas de Meyer y Regnault, y mencionar en que consiste el método de densidades límites para determinar masas molares.
- 4. ¿Qué es presión parcial y en que sistemas la encuentro?
- 5. ¿Qué relación existe entre la masa molar y la presión parcial?

Problema: De acuerdo con el valor de masa molar obtenido y averiguando en la ficha técnica las propiedades, proponer cuál de los líquidos propuestos por el profesor es la sustancia problema.

Material y reactivos	
1 Matraz bola de fondo plano de 1 000 mL	1 tramo de tubo látex
1 termómetro	1 soporte universal con pinzas
2 tubos de vidrio (15 cm) en ángulo recto	1 llave de paso
1 Tapón trihoradado para el matraz	1 baño de temperatura constante
1 manómetro de mercurio	Ampolletas de vidrio delgado para el líquido volátil

ESQUEMA

Medidas de seguridad

Procedimiento experimental

- 1. Antes de armar el equipo verificar que esté limpio y seco.
- 2. Revisar que la ampolleta con el líquido volátil no tenga fugas o roturas. Registrar la masa de la ampolleta vacía y la masa de la ampolleta con líquido.
- 3. Introducir la ampolleta dentro del matraz bola inclinando el mismo, para no romperla.
- 4. Armar el equipo como se muestra en el esquema, verificando que las uniones queden ajustadas para evitar fugas.
- 5. Llevar a cabo la siguiente prueba para verificar que no existen fugas:
- a) Soplar por el extremo del tubo látex que queda libre, y cerrar la llave de paso.
- b) Verificar que la diferencia de altura de las columnas de mercurio se mantenga constante durante 30 segundos. Si esto no ocurre, se deben revisar las uniones y el tapón para localizar el origen de la fuga.
- c) Si no hay fugas, abrir la llave de paso.
- 6. Introducir el matraz bola en el baño de temperatura constante; lo más que permita el baño, para evitar gradientes de temperatura.
- 7. Cuando se alcance una temperatura alrededor de 70 °C, cerrar la llave de paso.

Registrar la presión manométrica y la temperatura inmediatamente después de cerrar.

- 8. Sacar el matraz bola del baño, agitarlo fuertemente para romper la ampolleta e inmediatamente reintroducirlo al baño.
- 9. Cuando la temperatura del sistema (aire y vapor del líquido volátil) sea la misma que la registrada al cerrar la llave de paso, registrar la presión manométrica.

Manejo de datos

Constante universal de los gases R = 0.082 L atm mol⁻¹ K⁻¹ Densidad del agua a la temperatura ambiente =

Datos Experimentales	
Masa ampolleta sin líquido (g)	
Masa ampolleta con líquido (g)	
Presión barométrica local (cmHg)	
Temperatura al cerrar el sistema (°C)	
Presión manométrica inicial (mmHg)	
Presión manométrica final (mmHg)	
Masa del matraz vacío (g)	
Masa del matraz con agua (g)	
Masa del agua en el matraz (g)	

a) En base a la última pregunta del cuestionario previo (¿Qué relación existe entre la masa molar y la presión parcial?) identifica que información se requiere para determinar la masa molar.

Hoja de cálculos	
Masa de la sustancia problema (g)	
Presión parcial del vapor del líquido volátil (atm)	
Volumen del sistema (aire y vapor del líquidovolátil) (L)	
Masa molar de la sustancia problema (g/mol)	

Resolución al problema propuesto (anexar hoja de cálculos)

- 1. De acuerdo con el valor de masa molar obtenido y a los criterios investigados en la ficha técnica, dar respuesta al problema.
- 2. ¿Cuál es el porcentaje de error con respecto a la masa molar de la sustancia propuesta?

Manejo de residuos

Bibliografía

Maron, S. H. y Lando, J. B. (1976). *Fisicoquímica fundamental*. Ed. Limusa (cap. I) Maron, S. H. y Prutton, C. F. (1971). *Fundamentos de Fisicoquímica*. México. Ed.

Limusa (cap. I)

Moore, W. J. (1986). *Fisicoquímica Básica*. Editorial Prentice-Hall Internacional (cap. 2)

Sienko, M. J. y Plane, R. A. (1986). *Química Principios y Aplicaciones*. Mc Graw Hill (cap. 6)

***Tomado de Colección de problemas de Termodinámica Enseñanza Práctica publicado por: M. en C. Natalia E. de la Torre Aceves; IQ Ramiro E. Domínguez Danache; Q. Guillermina Sánchez Salinas.

ACTIVIDADES SUGERIDAS PARA COMPLEMENTAR EL TEMA DE MASA MOLAR

Reflexionar y responder

- 1. De acuerdo con el Manual de Física y Química CRC la composición en volumen de la atmósfera es la siguiente: 78.084% de N2, 20.946% de O2, 0.934% de Ar y 0.033% de CO2. Calcular las presiones parciales del nitrógeno y el oxígeno suponiendo que su comportamiento es ideal.
- 2. Resolver los siguientes problemas:
- a) Se determina la masa molar de la nicotina mediante el método de Dumas. El matraz usado tiene una capacidad de 248 mL y la masa de la sustancia problema fue 0.904g. Al cerrar el matraz se registró una temperatura de 246 oC y una presión de 72.8 cmHg. ¿Cuál es el valor de la masa molar de la nicotina en g/mol?***
- b) En un aparato de Víctor Meyer al evaporarse 0.110 g de un hidrocarburo puro se desplazaron 27 mL de aire medidos en una bureta de mercurio a 26.1 oC y 0.9776 atm de presión. ¿Cuál es la masa molar del hidrocarburo?***

Aplicación del lenguaje termodinámico

- 1. En el experimento que se realizó, ¿cuál es el sistema antes y después de romper la ampolleta?
- 2. Antes de romper la ampolleta, ¿cuántos componentes tiene el sistema?, ¿cuáles son?, ¿qué componente se encuentra en mayor proporción?
- 3. Dibujar el instrumento de trabajo y señalar dónde se encuentra el sistema.
- 4. Después de romper la ampolleta, ¿cuántas fases presenta el sistema?
- 5. ¿Qué tipo de paredes limitan el sistema?
- 6. ¿Cómo se clasifica el sistema antes y después de romper la ampolleta?
- 7. ¿Cuáles son las variables termodinámicas que se modifican durante el experimento?
- 8. ¿Cuáles son las variables termodinámicas que permanecen constantes?
- 9. La masa molar se clasifica como una propiedad ______.