CONSTANTE DE EQUILIBRIO. DISOLUCIÓN DEL KNO₃.

Grupo:	Equipo:	Fecha:	
Nombre(s):			

I. OBJETIVO GENERAL

Estudiar el equilibrio de una reacción de disolución para determinar las propiedades termodinámicas asociadas a ésta,

II. OBJETIVOS PARTICULARES

- a) Determinar la solubilidad del KNO₃ a diferentes temperaturas
- **b)** Determinar la influencia de la temperatura sobre la solubilidad del KNO₃ y sobre la constante de equilibrio
- c) Obtener la constante de producto de solubilidad del KNO₃
- d) Obtener la constante de equilibrio de disolución del KNO₃
- e) Obtener las propiedades termodinámicas ΔG° , ΔH° y ΔS° para la reacción de disociación del KNO₃

III. PROBLEMA

Determinar el valor de la constante de equilibrio para la disolución del KNO $_3$ en el intervalo de temperatura de 60 a 20°C. Calcular el valor de Δ G°, Δ H° y Δ S° a estas mismas condiciones.

$$KNO_{3 (s)} + H_20 = K^+_{(aq)} + NO_3^-_{(aq)}$$

A.1. CUESTIONARIO PREVIO

- 1. Definir solubilidad e indicar las unidades en las que se expresa.
- 2. ¿Qué es la constante del producto de solubilidad (Ks)?
- **3.** ¿Qué relación existe entre la constante de equilibrio y el ΔG°? ¿Cómo se calcula el ΔG° de una reacción a partir de la constante de equilibrio?
- 4. Investigar para el nitrato de potasio a 25°C las siguientes entalpías de formación: Tabla 1

	ΔH°_{f} (kJ/mol)
KNO _{3 (s)}	
K ⁺ (aq)	
NO ₃ ⁻ (aq)	

- 5. Con la información de la tabla anterior calcular el ΔH° de la reacción de disolución.
- 6. A partir de la ecuación de Gibbs-Helmholtz y la relación entre la constante de equilibrio y el ΔG, encontrar una relación entre la constante de equilibrio y el ΔH°.

A.2. PROPUESTA DEL DISEÑO EXPERIMENTAL

Llevar a cabo una discusión grupal, identificar las variables involucradas y plantear la hipótesis para proponer el diseño del experimento que pueda conducir a la resolución del problema planteado (considerar que en el laboratorio se dispone del material indicado en el punto **A3**). Anotar la propuesta en el Cuadro 1.

Cuadro 1. Variables, hipótesis y propuesta del diseño de experimento.

Variables.	
Hipótesis.	
Diseño de experimentos.	

A.3. REACTIVOS Y MATERIALES.

4 g de KNO ₃ (R.A.)	1 Probeta graduada de 25 mL. con base de
Agua destilada	plástico
	1Termómetro digital (-10 a 100°C)
	1 Bureta
	1 Soporte
	1 Baño María (vaso de pp de 600 mL)
	1 resistencia eléctrica de calentamiento

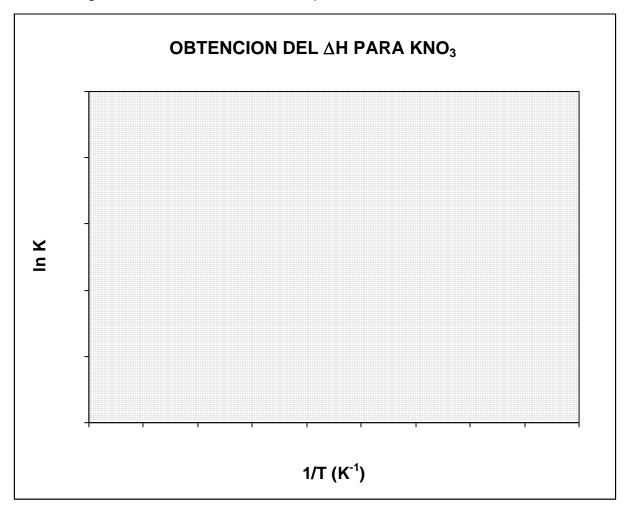
A.4. METODOLOGÍA EMPLEADA.

Describir detalladamente en el cuadro 2 la metodología empleada después de haber realizado el experimento.

Cuadro 2. Metod	lología empleada			
	LCULOS Y RESULT			
_	-	ales de temperatura y		la solución en
a tabla 2. Calcula	ar el número de mole:	s del KNO ₃ (anotar en l	a tabla 1).	
ΓABLA 2. Datos	experimentales.	Masa de	KNO ₃ : 4 gramo	os
	-		atmosférica =	
n KNO₃	vol. de agua	vol. total de	temperatura	temperatura
(mol)	agregado (mL)	solución (mL)	(°C)	(K)
	3			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
2. Algoritmo de				
_	cálculo	nte de equilibrio de la d	isolución de KNO₃	3.
_	cálculo	nte de equilibrio de la d	isolución de KNO₃	3.
_	cálculo	nte de equilibrio de la d	isolución de KNO₃	3-
2. Algoritmo de a) Explicar cómo	cálculo	nte de equilibrio de la d	isolución de KNO₃	3-

Laboratorio de equilibrio y cinética

b) Escribir la relación de la constante de equilibrio de la disolución del KNO ₃ con la energía
de Gibbs.
c) Escribir la relación de la constante de equilibrio con la entalpía y entropía de reacción
Cálculos.
Con los valores experimentales obtenidos en la tabla 2.
a) Calcular la concentración de los iones (solubilidad) para cada evento. $[K^+] = [NO_3^-] = s$.
b) Calcular la constante de equilibrio "K _s ".
c) Calcular ΔG° a partir de la constante de equilibrio para cada temperatura.
d) Calcular ΔS° a partir de los valores de ΔG° obtenido para cada evento.


TABLA 2. Calculo de propiedades.

Vol. total	Temp.	1/T	solubilidad			ΔG°	ΔS°
solución	(K)	(K ⁻¹)	"s"	Ks	In K _s	(J/mol)	(J/mol K)
(mL)			(mol/L)				

 $\Delta H^{\circ}_{\text{(te\'orico) (25°C)}}$ = ______ J/mol.

A.6. ELABORACIÓN DE GRÁFICOS

1. Trazar la gráfica ln K vs 1/T. Analizar el comportamiento observado.

A.7. ANÁLISIS DE RESULTADOS.

¿Qué unidades tiene? Anotar los resultados obtenidos.				
$m = r^2 =$				
2. Comparar el valor del ΔH° obtenido experimentalmente con el teórico calculado a 25°C				
(calculado en el cuestionario previo.)				
$\Delta H_{\text{teórico}} =$				
$\Delta H_{\text{experimental}} =$				
% error =				
3. Calcular ΔS°_{r} A partir de los valores de ΔG°_{r} y ΔH°_{r} obtenidos para cada evento:				
4. A partir de los resultados obtenidos para el ΔG° _r , ΔH° _r y ΔS° _r , discutir y contestar las				
siguientes preguntas				
a) ¿Es el proceso de disolver KNO ₃ en agua espontáneo a todas las temperaturas				
estudiadas?				
b) ¿Es una reacción que libera energía o que requiere energía?				
b) ¿Es una reacción que libera energia o que requiere energía:				
c) ¿Es el valor de ΔS°_{r} consistente con el esperado para esta reacción?				

1. Calcular la pendiente y el coeficiente de correlación. ¿Qué representa esta pendiente?

A.8. CONCLUSIONES	3.		
A.9. MANEJO DE RES	SOLICIS		
Residuo	Cantidad	Riesgo	Forma de disposición
A.10. BIBLIOGRAFÍA			
		/ Hill 38 od Móvico	2008)
Chang, R., Fisicoquím	<i>ica</i> , Mc Graw		
Chang, R., Fisicoquím Silberman, R., Solub	ica, Mc Graw	ermodynamics: An I	2008). ntroductory Experiment, Journal of
Chang, R., Fisicoquím	ica, Mc Graw	ermodynamics: An I	