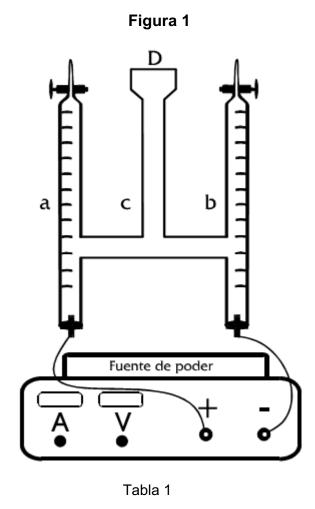
Práctica 11. La constante de Avogadro

Pregunta a responder al final de la sesión

En la electrólisis del agua con el aparato de Hoffman ¿cómo se relaciona el valor de la corriente eléctrica (i) y el tiempo (t), con la constante de Avogadro?

Cue	Cuestionario Previo					
Inv	Investiga la diferencia entre electrólisis e hidrólisis					
 Q	ué es la intensidad de corriente?					
	TERIAL: Vaso de precipitados de 250 mL Soporte universal	1	✓	Pinzas de tres dedos Cable con caimán	1 2	
✓	REACTIVOS: ✓ Disolución de sulfato de sodio 1 mol/L* Nota: * Preparada por el personal de apoyo al laboratorio (Laboratorista)					
	UIPO: Aparato de Hoffman	✓	Fu	ente de poder		

Procedimiento experimental


- 1. Utiliza un aparato de electrólisis de Hoffman y colócalo de modo que la parte frontal del equipo esté dirigida hacia ti (ver figura 1).
- 2. Abre la llave de los tubos **a** y **b** de la siguiente manera: sujeta con una mano el tubo a la altura de la llave y con la otra gira la llave.
- 3. Llena el aparato con una disolución acuosa de sulfato de sodio (1 mol/L) por el extremo **D**, inclínalo hacia ambos lados para liberar el aire atrapado. Sigue agregando más disolución hasta que ésta alcance el nivel cero en la escala de tubos **a** y **b**. En caso de que la disolución se pase del nivel indicado, es imprescindible retirar el exceso. Para esto extrae el sobrante de la disolución que se encuentra en el tubo **c**, con ayuda de una pipeta.
- 4. Conecta el electrodo que se encuentra en la salida **b**, a la terminal negativa (cátodo) de una fuente de poder, con ayuda de unos caimanes. Conecta el electrodo que se encuentra en la salida del tubo **a**, a la terminal positiva (ánodo) de la fuente de poder. El dispositivo completo se muestra en la figura 1.
- 5. Lee el instructivo de la fuente de poder que vas a utilizar y asegúrate de su buen funcionamiento.
- 6. Asegúrate de que tres de tus compañeros tengan listo cada uno un cronómetro. Enciende la fuente de poder. Ajusta el valor de la intensidad corriente en un valor que te indique el profesor y con las llaves abiertas, deja que se lleve a cabo la electrólisis durante medio minuto. Mantén el mismo valor de intensidad de corriente hasta acabar las mediciones.

Registra en la tabla 1, la temperatura y la presión del lugar del trabajo.

- 7. En forma simultánea cierra las llaves y haz funcionar los tres cronómetros. Detén uno de ellos cuando el tubo que está conectado a la terminal negativa llegue al volumen llegue a 3 mL gas. Registra en la tabla 1 el tiempo en segundos de ese cronómetro. En el momento en que el volumen de gas haya llegado a 6 mL detengan el segundo cronómetro y registren el tiempo en segundos El tercer cronómetro se debe detener cuando el volumen de gas llegue a 9 mL, registren también este tiempo en segundos.
- 8. Observa la relación de volúmenes los gases (hidrógeno y oxígeno) en cada uno de los tubos del aparato y anótalos ¿son parecidos?
- 9. Ahora elige un valor arbitrario para la intensidad de corriente y realiza la electrólisis del agua. Mide el tiempo requerido para obtener los mismos volúmenes de gas hidrógeno, en la terminal negativa.

Registra tus resultados en la tabla 2.

- 10. Repite el experimento, desde el paso 3, agregando una gota de indicador universal.
- 11. Repite el experimento, desde el paso 3, con agua destilada.

Temperatura = Presión = 586 mmHg

Volumen de hidrógeno (mL)	Tiempo (s)	Intensidad de corriente (A)

Tabla 2

Temperatura =	Presión = 586 mmHg				
Volumen de hidrógeno (mL)	Tiempo (s)	Intensidad de corriente (A)			

Cuestionario

1.	Durante el experimento se llevó a cabo la reacción de electrólisis del agua, escribe la ecuación balanceada que responde a este proceso.
	Ecuación:
	¿Qué gases se formaron durante el experimento?
2.	¿Por qué se utilizó una disolución acuosa de sulfato de sodio en vez de agua?
3.	¿Sufre alguna alteración el Na₂SO₄ durante el experimento? ¿Por qué?
	¿Cuál es la función de la corriente eléctrica en el experimento?

5.	¿Cómo es la relación de los volúmenes de los gases obtenidos en el experimento? ¿Por qué?
6.	En el tubo que está conectado a la terminal negativa tuvo lugar la reacción de reducción, ¿qué gas se produjo?
7.	En el tubo que está conectado a la terminal positiva tuvo lugar la reacción de oxidación, ¿qué gas se produjo?
8.	¿Qué relación existe en los tiempos solicitados en el inciso 7 y los volúmenes generados de gas hidrógeno
9.	¿Qué relación existe en los tiempos solicitados en el inciso 9 y los volúmenes de gas hidrógeno generados
10	 Traza en una hoja de papel milimetrado las gráficas de volumen (mL) (ordenadas) en función del tiempo (s) (abscisas) para ambos casos.
	a) ¿Por qué para volúmenes similares se requiere de tiempos diferentes?
	b) ¿Existe alguna relación entre la carga eléctrica en coulombios, que se utilizó para obtener cada uno de los volúmenes y la intensidad de corriente aplicada?
11	. Calcula en cada caso la cantidad de carga eléctrica Q (coulombios, C) que se utilizaron para generar los volúmenes de gas de hidrógeno que se te solicitaron. Recuerda que el producto de la intensidad de corriente I (amperes, A) por el tiempo t (segundos, s) es Q. Registra tus datos en la tabla 3.
	Q = It (ecuación 1)
12	Calcula la cantidad de gas hidrógeno (mol) producido en cada caso. Considéralo como gas ideal Registra tus datos en la tabla 3. ¿Qué relación encuentras entre los datos obtenidos?
13	Escribe la ecuación balanceada de reducción del agua (los productos son H ₂ y OH ⁻) y determina la cantidad en mol de electrones que se necesitaron para generar un mol de hidrógeno gaseoso. Anota to respuesta y nombra a este valor como <i>n</i> .
	Ecuación:
	Respuesta: <i>n</i> =

14.	Se sabe que la carga eléctric	a (Q) también se	relaciona	de la	siguiente	forma:
	oo dabo qao la darga diddillo	\sim	,	TOIGOIOTIG	ac ia	digalorito	.o.iia.

 $Q = \mathbf{n} \cdot \mathbf{F} \cdot n_{Hidrógeno} \qquad (ecuación 2)$

Donde:

F= constante de Faraday

n_{Hidrógeno} = cantidad de hidrógeno obtenido (mol)

La constante de Faraday (**F**) resulta de multiplicar la constante de Avogadro (**N**_A) por la carga del electrón ($e = 1.6022 \times 10^{-19} \text{ C}$)

$$\mathbf{F} = \mathbf{N}_{\mathsf{A}} \cdot e$$
 (ecuación 3)

Entonces el valor la constante de Avogadro puede determinarse, sustituyendo la ecuación 3 en la 2 y despejar **N**_A, de modo que:

$$N_A = Q / (n \cdot e \cdot n_{Hidrógeno})$$
 (ecuación 4)

Empleando la ecuación 4, determina el valor de NA para cada caso y anótalo en la tabla 3.

Tabla 3

			i abia o				
Semi-reacción de reducción del agua:							
n =				$e = 1.6022 \times 10^{-19} \text{ C}$			
Volumen de H ₂ obtenido (mL)	Cantidad de H ₂ (mol)	Intensidad de corriente (A)	Tiempo (s)	Carga eléctrica (C)	Constante de Avogadro (N _A)		
3							
3							
6							
6							
9							
9							

15.	Escriba la ecuación balanceada de oxidación del agua (los productos son O2 y H ⁺).
	Ecuación:

Determina la cantidad en mol de electrones que se necesitaron para generar un mol de oxígeno gaseoso. Anota tu respuesta y nombra a este valor como n. Respuesta: n =

16. 	¿Qué volúmenes de gas oxígeno se obtienen cuando se generan 3 mL, 6 mL y 9 mL de gas hidrógeno?
17. ox	Haga los cálculos necesarios para determinar la constante de Avogadro a partir de 3 mL de gas ígeno generado.
	¿Qué intensidad de corriente (A) se requiere para generar 20 mL de gas oxígeno por electrólisis del jua en un tiempo de t = 120 s?
	be tus conclusiones sobre la práctica.
	electrólisis del agua con el aparato de Hoffman ¿cómo se relaciona el valor de la corriente eléctrica (i) empo (t), con la constante de Avogadro?

Tratamiento de Residuos:

R1: La disolución de sulfato de sodio con y sin indicador se le regresa al laboratorista para reutilizar.

Reglamentos de Higienes y Seguridad:

a) Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química.

https://quimica.unam.mx/proteccion-civil-facultad-quimica/reglamento-higiene-seguridad-laboratorios-la-facultad-quimica/

b) Reglamento para los Estudiantes y Profesores de los Cursos Experimentales del Departamento de Química Inorgánica y Nuclear

https://quimica.unam.mx/wp-content/uploads/2016/02/RIHyS-_QlyN-Final.pdf

Referencias Bibliográficas:

- ✓ Brown, T., LeMay, H., Bursten, B., Burdge, J. (2004). Química: la ciencia central. Pearson educación.
- ✓ Chang, R., Goldsby, K, (2013). Química (11ª Ed.). México: Mc Graw Hill.
- ✓ Frey, Paul, R. (2002). Problemas de Química y cómo resolverlos. México: Compañía editorial continental, (17ª reimpresión). Pp. 280-290.
- ✓ Garritz, A., Gasque, L., Martínez, A. Química Universitaria, (2005). México: Pearson Educación, ISBN 9789702602927

- ✓ Petrucci, R.H., William S.H., F. Geoffrey, H. (2011). Química, (10ª Ed.). México: Prentice -Hall, 2011 ISBN 84-205-3553-8
- ✓ Whitten, K.W., R.E. Davis y M.L.Peck, (2014). Química, (10^a ed). México: Cengage Learning,

INSTRUCTIVO PARA USO DE LA FUENTE DE PODER PARA LA PRÁCTICA DE LA CONSTANTE DE AVOGADRO (ELECTRÓLISIS DEL AGUA).

La resistencia de la fuente de poder es aproximadamente R ≈55.5 Ω.

La indicación "ON" significa que hay que apretar el botón correspondiente y que la luz de ese botón esté encendida.

Conectar y encender la fuente de poder con el botón Power \rightarrow ON.

Los siguientes botones tienen que estar encendidos:

Output protect →ON. Es importante que este botón esté encendido ya que protege a la fuente de poder de cualquier anomalía.

+18 V →ON.

Variable →ON.

A →ON, ajustar con el botón el valor de amperaje deseado y sumarle + 0.05.

 $V \rightarrow ON$, al prender este botón, el botón de amperaje se apaga, ajustar con el botón el valor de voltaje que se obtiene con la siguiente fórmula: V = R I.

Tracking →ON.

Output →ON, al encender este botón la fuente de poder empieza a funcionar, y se debe ajustar con la perilla el valor de voltaje hasta llegar al valor de amperaje deseado (al cambiar el voltaje cambia el valor delamperaje ya que el equipo completo tiene un valor de resistencia diferente al de la fuente de poder).

Una vez hecho esto se puede empezar a realizar el experimento.

Hacer las mediciones.

Output →OFF. La fuente de poder deja de funcionar, pero sigue encendido el aparato.

Cuando se hace una medición y están parpadeando las luces, significa que el valor de amperaje o voltaje están incorrectos.

Una vez terminada la práctica, apague la fuente de poder, Power →OFF, y desconecte el equipo de Hoffman.

Para realizar esta práctica es importante la concentración de la disolución de Na₂SO₄, a menor concentración se obtiene un amperaje menor, y a mayor concentración se obtiene un amperaje mayor. Para obtener valores de 0.2 A y menores, utilizamos una concentración 1 M de Na₂SO₄.

INSTRUCTIVO PARA USO DE LA FUENTE DE PODER DE DOBLE ENTRADA PARA LA PRÁCTICA DE LA CONSTANTE DE AVOGADRO (ELECTRÓLISIS DEL AGUA).

- 1. CONECTAR LA FUENTE DE PODER AL APARATO DE HOFFMAN.
- 2. VER QUE TODOS LOS BOTONES ESTÉN EN LA POSICIÓN DE MÍNIMO (MIN) Y QUE EL BOTÓN DE ENCENDIDO ESTÉ APAGADO (APRETADO EL BOTÓN EN LA PARTE QUE TIENE UN CÍRCULO).
- 3. CONECTAR LA FUENTE DE PODER A LA CORRIENTE ELÉCTRICA.

- 4. ENCENDER EL EQUIPO.
- 5. APRETANDO EL BOTÓN CC SET, AJUSTAR CON EL BOTÓN A UN AMPERAJE ENTRE 0.2 A 0.6 (ESTO SIRVE DE PROTECCIÓN PARA EL EQUIPO).
- 6. APRETAR EL BOTÓN DC OUT Y AJUSTAR A UN VOLTAJE DE TAL FORMA QUE SE PUEDA MEDIR UN AMPERAJE EN LA PANTALLA (CURRENT) (EMPEZARÁ A FUNCIONAR EL EQUIPO) *NOTA: SE SUGIERE PONER AL MÁXIMO EL
- 7. DEJE DE APRETAR EL BOTÓN DC OUT (EL EQUIPO DEJARÁ DE FUNCIONAR).
- 8. EL EQUIPO YA ESTÁ LISTO. AJUSTE EL APARATO DE HOFFMAN Y COMIENCE SU EXPERIMENTO.
- 9. CUANDO ESTÉ REALIZANDO YA SU EXPERIMENTO, EL AMPERAJE QUE SE ESTÁ UTILIZANDO ES EL QUE APARECE EN LA PUNTA "CURRENT". *NOTA: EL AMPERAJE MÁXIMO ES DE 0.06 A

Elaborado por.

Dr. Héctor García Ortega